9 research outputs found

    Diffractometer‐Control Software For Bragg‐Rod Measurements

    Full text link
    We present Generalized Diffractometer Control (gdc), a diffractometer‐control software package developed specifically for high‐precision measurements of Bragg rods; we discuss its features and analyze its performance in data collection. gdc, implemented at several APS beamlines, controls a six‐circle diffractometer in either Eulerian or kappa geometry, yet does not assume a mechanically ideal diffractometer; instead, the measured directions of the diffractometer axes (and the direction of the incident beam) are input parameters. The Labview‐based program features a graphical interface, making it straightforward to find all the commands and operations. Other features include optimized scans along Bragg rods, straightforward background subtraction, and extensive sets of pseudomotors. © 2004 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87660/2/1221_1.pd

    Design and performance of a stable first crystal mount for a cryogenically cooled Si monochromator at the Advanced Photon Source

    Full text link
    We present a new design for mounting a cryogenically cooled Si crystal which gives greatly improved beam stability. The design has been successfully implemented at the University of Michigan, Howard University, Bell Laboratories-Lucent Technologies Collaborative Access Team (MHATT-CAT) 7ID Beamline of the Advanced Photon Source. Before the installation of the new crystal mount, our Si (lll) cryogenically cooled monochromator was sensitive to the pressure fluctuations of the liquid nitrogen coolant, such that the angle of incidence on the first crystal varied linearly with the applied pressure in the cooling lines, causing beam motion of about 250 Όm, 60 m250ÎŒm,60m from the source. The key element of the design is a symmetrically positioned cooling manifold which balances the forces caused by pressure fluctuations. With this new mount, the typical beam stability is now about 10 ÎŒm, comparable to the source stability. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69891/2/RSINAK-73-3-1511-1.pd

    Direct structure determination of systems with two-dimensional periodicity

    Full text link
    We describe a new x-ray method for the direct measurement of structures which have two-dimensional (2D) periodicity, and are positionally correlated with an underlying substrate crystal. Examples include reconstructed crystal structures at interfaces, layered heterostructures, crystalline-amorphous interfaces, and self-assembled structures on crystalline substrates. The structure is obtained by determining the complex scattering factors along the Bragg rods and Fourier back-transforming them into real space. The method for determining the complex scattering factors has two variations. The first is generally applicable. It involves the measurement of the derivative of the diffraction phase along the Bragg rods and the subsequent determination of the diffraction phase using the known structure of the substrate. The second is applicable to 2D systems, with an unknown structure, that are buried within a crystal with a known structure. In this case the diffraction phase is determined without the need to measure its derivative first. We experimentally demonstrate both variations by determining the diffraction phase along one Bragg rod of a GaAs sample with four buried AlAs monolayers. Using simulated data along the Bragg rods within a volume in reciprocal space, we show that the method yields the three-dimensional structure of 2D systems with atomic resolution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48883/2/c01701.pd

    Asymmetrically cut crystals as optical elements for highly collimated x‐ray beams

    Full text link
    Asymmetrically cut perfect crystals, in both the Laue and Bragg geometries, are examined as single crystal monochromators for x‐ray beams that are collimated to a small fraction of the Darwin width, as is typical in experiments with coherent x rays. Both the Laue and asymmetric Bragg geometries are plagued by an inherent chromatic aberration that increases the beam divergence much beyond that of the symmetric Bragg geometry. Measurements from a recent experiment at the ESRF are presented to compare Si(220) (symmetric Bragg), diamond(111) (asymmetric Laue), and diamond(111) (symmetric Bragg inclined) geometries. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70952/2/RSINAK-66-2-1506-1.pd

    Discovery of Liquid Crystal Mesophases with a Six-Layer Periodicity

    No full text
    In 2006, employing ellipsometry and resonant x-ray diffraction, our research group discovered a liquid crystal mesophase having a six-layer periodicity in a ternary mixture (mixture A) as well as in a binary mixture (mixture B). This phase showsantiferroelectric-like properties. Subsequently, J. K. Vij’s group used field-induced birefringence to explore the physical properties of various binary mixtures similar to mixture B. Recently, Y. Takanishi et al. obtained dielectric responses and twodimensional microbeam resonant x-ray diffraction profiles as a function of temperature from a different binary mixture with one compound of the mixture containing a central bromine atom. They discovered another new mesophase which shows a six-layer structure and displays ferrielectric-like responses along with a different phase sequence. This article will review the sequence of events leading up to the discovery of the new phases with a six-layer periodicity and highlight differences in conclusions about the new phases and an ongoing debate about the existence of a phase with five-layer periodicity

    Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating

    No full text
    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms

    Liquid crystal mesophases beyond commensurate four-layer periodicity

    No full text
    For more than one decade, SmC∗d4, SmC∗d3, andSmC∗ A were the only three confirmed commensurate SmC* variant phases with periodicities less than or equal four layers. In 2006, employing ellipsometry and resonant X-ray diffraction (RXRD), our research team first discovered a new liquid crystal mesophase having a six-layer periodicity in one ternary mixture which includes one sulfur-containing compound. From our ellipsometric results, this phase showed antiferroelectric-like optical response. This novel discovery inspired renewed interest to search for liquid crystal mesophases with commensurateperiodicities greater than four layers. Soon after, another mesophase having a six-layer structure and showing a ferrielectric-like dielectric response, instead, was uncovered by RXRD measurements on a different binary mixture which has one bromine-containing compound. Meanwhile mesophases having a 5-, 8-, 12- or 15-layer periodicity were reported. However, numerous questions remain to be addressed associated with these unusual reported phases. Theoretical models giving rise to mesophases with periodicities greater than four layers have been developed; but, to date, none of them haveprovided satisfactory explanations of all the physical phenomena related to the mesophases exhibiting a six-layer structure. Moreover, the question “what is the source of long-range interactions between liquid-like smectic layers, which are responsible for establishing mesophases with long periodicities and mean-field behavior of the smectic-A–smectic-C transition?” remains unanswered for more than three decades

    Synchrotron Microbeam Diffraction Studies on the Alignment within 3D-Printed Smectic-A Liquid Crystal Elastomer Filaments during Extrusion

    No full text
    3D printing of novel and smart materials has received considerable attention due to its applications within biological and medical fields, mostly as they can be used to print complex architectures and particular designs. However, the internal structure during 3D printing can be problematic to resolve. We present here how time-resolved synchrotron microbeam Small-Angle X-ray Diffraction (Ό-SAXD) allows us to elucidate the local orientational structure of a liquid crystal elastomer-based printed scaffold. Most reported 3D-printed liquid crystal elastomers are mainly nematic; here, we present a Smectic-A 3D-printed liquid crystal elastomer that has previously been reported to promote cell proliferation and alignment. The data obtained on the 3D-printed filaments will provide insights into the internal structure of the liquid crystal elastomer for the future fabrication of liquid crystal elastomers as responsive and anisotropic 3D cell scaffolds
    corecore