27 research outputs found

    Metal-insulator transition in the one-dimensional Holstein model at half filling

    Full text link
    We study the one-dimensional Holstein model with spin-1/2 electrons at half-filling. Ground state properties are calculated for long chains with great accuracy using the density matrix renormalization group method and extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice fluctuations and that the system remains in a metallic phase with a non-degenerate ground state and power-law electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon frequency small, the system undergoes a transition to an insulating Peierls phase with a two-fold degenerate ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure
    corecore