19 research outputs found

    Potato protein ingestion increases muscle protein synthesis rates at rest and during recovery from exercise in humans

    Get PDF
    Introduction Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. Methods In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-13C6]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. Results Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h−1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h−1, respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h−1 after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). Conclusions Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans

    Get PDF
    INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-(13)C(6)]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h(−1) and from 0.021% ± 0.014% to 0.050% ± 0.012%·h(−1), respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h(−1) after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    Ingestion of an ample amount of meat substitute based on a lysine-enriched,plant-based protein blend stimulates postprandial muscle proteinsynthesis to a similar extent as an isonitrogenous amount of chickenin healthy, young men

    Get PDF
    Plant-based proteins are considered to be less effective in their capacity to stimulate muscle protein synthesis when compared with animal-based protein sources, likely due to differences in amino acid contents. We compared the postprandial muscle protein synthetic response following the ingestion of a lysine-enriched plant-based protein product with an isonitrogenous amount of chicken. Twenty-four men (age 24 ± 5 years; BMI 22·9 ± 2·6 kg·m−2) participated in this parallel, double-blind, randomised controlled trial and consumed 40 g of protein as a lysine-enriched wheat and chickpea protein product (Plant, n 12) or chicken breast fillet (Chicken, n 12). Primed, continuous intravenous L-(ring-13C6)-phenylalanine infusions were applied while repeated blood and muscle samples were collected over a 5-h postprandial period to assess plasma amino acid responses, muscle protein synthesis rates and muscle anabolic signalling responses. Postprandial plasma leucine and essential amino acid concentrations were higher following Chicken (P < 0·001), while plasma lysine concentrations were higher throughout in Plant (P < 0·001). Total plasma amino acid concentrations did not differ between interventions (P = 0·181). Ingestion of both Plant and Chicken increased muscle protein synthesis rates from post-absorptive: 0·031 ± 0·011 and 0·031 ± 0·013 to postprandial: 0·046 ± 0·010 and 0·055 ± 0·015 % h−1, respectively (P-time < 0·001), with no differences between Plant and Chicken (time x treatment P = 0·068). Ingestion of 40 g of protein in the form of a lysine-enriched plant-based protein product increases muscle protein synthesis rates to a similar extent as an isonitrogenous amount of chicken in healthy, young men. Plant-based protein products sold as meat replacers may be as effective as animal-based protein sources to stimulate postprandial muscle protein synthesis rates in healthy, young individuals

    The anabolic response to plant-based protein ingestion

    Get PDF
    There is a global trend of an increased interest in plant-based diets. This includes an increase in the consumption of plant-based proteins at the expense of animal-based proteins. Plant-derived proteins are now also frequently applied in sports nutrition. So far, we have learned that the ingestion of plant-derived proteins, such as soy and wheat protein, result in lower post-prandial muscle protein synthesis responses when compared with the ingestion of an equivalent amount of animal-based protein. The lesser anabolic properties of plant-based versus animal-derived proteins may be attributed to differences in their protein digestion and amino acid absorption kinetics, as well as to differences in amino acid composition between these protein sources. Most plant-based proteins have a low essential amino acid content and are often deficient in one or more specific amino acids, such as lysine and methionine. However, there are large differences in amino acid composition between various plant-derived proteins or plant-based protein sources. So far, only a few studies have directly compared the muscle protein synthetic response following the ingestion of a plant-derived protein versus a high(er) quality animal-derived protein. The proposed lower anabolic properties of plant- versus animal-derived proteins may be compensated for by (i) consuming a greater amount of the plant-derived protein or plant-based protein source to compensate for the lesser quality; (ii) using specific blends of plant-based proteins to create a more balanced amino acid profile; (iii) fortifying the plant-based protein (source) with the specific free amino acid(s) that is (are) deficient. Clinical studies are warranted to assess the anabolic properties of the various plant-derived proteins and their protein sources in vivo in humans and to identify the factors that may or may not compromise the capacity to stimulate post-prandial muscle protein synthesis rates. Such work is needed to determine whether the transition towards a more plant-based diet is accompanied by a transition towards greater dietary protein intake requirements

    Ketone Bodies and Exercise Performance:The Next Magic Bullet or Merely Hype?

    Get PDF
    Elite athletes and coaches are in a constant search for training methods and nutritional strategies to support training and recovery efforts that may ultimately maximize athletes’ performance. Recently, there has been a re-emerging interest in the role of ketone bodies in exercise metabolism, with considerable media speculation about ketone body supplements being routinely used by professional cyclists. Ketone bodies can serve as an important energy substrate under certain conditions, such as starvation, and can modulate carbohydrate and lipid metabolism. Dietary strategies to increase endogenous ketone body availability (i.e., a ketogenic diet) require a diet high in lipids and low in carbohydrates for ~4 days to induce nutritional ketosis. However, a high fat, low carbohydrate ketogenic diet may impair exercise performance via reducing the capacity to utilize carbohydrate, which forms a key fuel source for skeletal muscle during intense endurance-type exercise. Recently, ketone body supplements (ketone salts and esters) have emerged and may be used to rapidly increase ketone body availability, without the need to first adapt to a ketogenic diet. However, the extent to which ketone bodies regulate skeletal muscle bioenergetics and substrate metabolism during prolonged endurance-type exercise of varying intensity and duration remains unknown. Therefore, at present there are no data available to suggest that ingestion of ketone bodies during exercise improves athletes’ performance under conditions where evidence-based nutritional strategies are applied appropriately

    Fructose Coingestion Does Not Accelerate Postexercise Muscle Glycogen Repletion

    No full text
    Background: Postexercise muscle glycogen repletion is largely determined by the systemic availability of exogenous carbohydrate provided. Purpose: This study aimed to assess the effect of the combined ingestion of fructose and glucose on postexercise muscle glycogen repletion when optimal amounts of carbohydrate are ingested. Methods: Fourteen male cyclists (age: 28 ± 6 yr; Wmax: 4.8 ± 0.4 W·kg-1) were studied on three different occasions. Each test day started with a glycogen-depleting exercise session. This was followed by a 5-h recovery period, during which subjects ingested 1.5 g·kg-1·h-1 glucose (GLU), 1.2 g·kg-1·h-1 glucose + 0.3 g·kg-1·h-1 fructose (GLU + FRU), or 0.9 g·kg-1·h-1 glucose + 0.6 g·kg-1·h-1 sucrose (GLU + SUC). Blood samples and gastrointestinal distress questionnaires were collected frequently, and muscle biopsy samples were taken at 0, 120, and 300 min after cessation of exercise to measure muscle glycogen content. Results: Plasma glucose responses did not differ between treatments (ANOVA, P = 0.096), but plasma insulin and lactate concentrations were elevated during GLU + FRU and GLU + SUC when compared with GLU (P < 0.01). Muscle glycogen content immediately after exercise averaged 207 ± 112, 219 ± 107, and 236 ± 118 mmol·kg-1 dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P = 0.362). Carbohydrate ingestion increased muscle glycogen concentrations during 5 h of postexercise recovery to 261 ± 98, 289 ± 130, and 315 ± 103 mmol·kg-1 dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P < 0.001), with no differences between treatments (time × treatment, P = 0.757). Conclusions: Combined ingestion of glucose plus fructose does not further accelerate postexercise muscle glycogen repletion in trained cyclists when ample carbohydrate is ingested. Combined ingestion of glucose (polymers) plus fructose or sucrose reduces gastrointestinal complaints when ingesting large amounts of carbohydrate

    Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults

    No full text
    Background: Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. Objective: We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. Methods: With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index ( BMI, in kg/m2 ): 23 ± 1; exercise: 1–10 h/wk] ingested 4 different beverages, each containing 800 mg ( ∼12.9 mmol ) nitrate: sodium nitrate ( NaNO3 ), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Results: Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages ( P < 0.001 ). Peak plasma nitrate concentrations were similar for all treatments ( all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L ). Peak plasma nitrite concentrations were different between treatments ( NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016 ). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice ( from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001 ) and rocket salad beverage ( from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007 ) and 300 min after ingestion of spinach beverage ( from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001 ), but did not change with NaNO3. Diastolic blood pressure declined 150 min after ingestion of all beverages ( P < 0.05 ) and remained lower at 300 min after ingestion of rocket salad ( P = 0.045 ) and spinach ( P = 0.001 ) beverages. Conclusions: Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements

    Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players

    No full text
    It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p &lt; 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players

    Myofibrillar and Mitochondrial Protein Synthesis Rates Do Not Differ in Young Men Following the Ingestion of Carbohydrate with Milk Protein, Whey, or Micellar Casein after Concurrent Resistance- and Endurance-Type Exercise

    Get PDF
    Protein ingestion during recovery from resistance-type exercise increases postexercise muscle protein synthesis rates. Whey protein has been reported to have greater anabolic properties than soy protein, an effect which may be attributed to the higher leucine content of whey. Objective: The objective of this study was to compare postprandial myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates after ingestion of carbohydrate with whey, soy, or soy protein enriched with free leucine (to match the leucine content of whey) during recovery from a single bout of concurrent resistance- and endurance-type exercise in young healthy men. Methods: In a randomized, double-blind, parallel-group design, 36 healthy young recreationally active men (mean SEM age: 23 0.4 y) received a primed continuous infusion of L-[ring-13C6]-phenylalanine and L-[ring-3,5-2H2]-tyrosine and ingested 45 g carbohydrate with 20 g protein from whey (WHEY), soy (SOY), or leucine-enriched soy (SOY + LEU) after concurrent resistance- and endurance-type exercise. Blood and muscle biopsies were collected over a 360 min postexercise recovery period to assess MyoPS and MitoPS rates, and associated signaling through the mammalian target of rapamycin complex 1 (mTORC1). Results: Postprandial peak plasma leucine concentrations were significantly higher in WHEY (mean SEM: 322 10 Umol/L) and SOY + LEU (328 14 Umol/L) compared with SOY (216 6 Umol/L) (P < 0.05). Despite the apparent differences in plasma leucinemia,MyoPS (WHEY: 0.054 0.002; SOY: 0.053 0.004; SOY + LEU: 0.056 0.004%h-1; = 0.83), and MitoPS (WHEY: 0.061 0.004; SOY: 0.061 0.006; SOY + LEU: 0.063 0.004%h-1; P = 0.96) rates over the entire 360 min recovery period did not differ between treatments. Similarly, signaling through mTORC1Ser2448, p70S6kThr389, 4E-BP1Thr37/46, and rpS6Ser235/236 was similar between treatments. Conclusion: Postexercise MyoPS and MitoPS rates do not differ after co-ingestion of carbohydrate with 20 g protein from whey, soy, or leucine-enriched soy protein during 360 min of recovery from concurrent resistance- and endurancetype exercise in young, recreationally active men. This trial was registered at Nederlands Trial Register as NTR5098. J Nutr 2019;149:210-220
    corecore