24 research outputs found

    A relocatable ocean model in support of environmental emergencies

    Get PDF
    During the Costa Concordia emergency case, regional, subregional, and relocatable ocean models have been used together with the oil spill model, MEDSLIK-II, to provide ocean currents forecasts, possible oil spill scenarios, and drifters trajectories simulations. The models results together with the evaluation of their performances are presented in this paper. In particular, we focused this work on the implementation of the Interactive Relocatable Nested Ocean Model (IRENOM), based on the Harvard Ocean Prediction System (HOPS), for the Costa Concordia emergency and on its validation using drifters released in the area of the accident. It is shown that thanks to the capability of improving easily and quickly its configuration, the IRENOM results are of greater accuracy than the results achieved using regional or subregional model products. The model topography, and to the initialization procedures, and the horizontal resolution are the key model settings to be configured. Furthermore, the IRENOM currents and the MEDSLIK-II simulated trajectories showed to be sensitive to the spatial resolution of the meteorological fields used, providing higher prediction skills with higher resolution wind forcing.MEDESS4MS Project; TESSA Project; MyOcean2 Projectinfo:eu-repo/semantics/publishedVersio

    A well-kept treasure at depth: precious red coral rediscovered in Atlantic deep coral gardens (SW Portugal) after 300 years

    Get PDF
    The highly valuable red coral Corallium rubrum is listed in several Mediterranean Conventions for species protection and management since the 1980s. Yet, the lack of data about its Atlantic distribution has hindered its protection there. This culminated in the recent discovery of poaching activities harvesting tens of kg of coral per day from deep rocky reefs off SW Portugal. Red coral was irregularly exploited in Portugal between the 1200s and 1700s, until the fishery collapsed. Its occurrence has not been reported for the last 300 years.info:eu-repo/semantics/publishedVersio

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Vacancy formation on C60/Pt (111): unraveling the complex atomistic mechanism

    Get PDF
    The interaction of fullerenes with transition metal surfaces leads to the development of an atomic network of ordered vacancies on the metal. However, the structure and formation mechanism of this intricate surface reconstruction is not yet understood at an atomic level. We combine scanning tunneling microscopy, high resolution and temperature programmed-x-ray photoelectrons spectroscopy, and density functional theory calculations to show that the vacancy formation in C60/Pt(111) is a complex process in which fullerenes undergo two significant structural rearrangements upon thermal annealing. At first, the molecules are physisorbed on the surface; next, they chemisorb inducing the formation of an adatom–vacancy pair on the side of the fullerene. Finally, this metastable state relaxes when the adatom migrates away and the vacancy moves under the molecule. The evolution from a weakly-bound fullerene to a chemisorbed state with a vacancy underneath could be triggered by residual H atoms on the surface which prevent a strong surface-adsorbate bonding right after deposition. Upon annealing at about 440 K, when all H has desorbed, the C60 interacts with the Pt surface atoms forming the vacancy-adatom pair. This metastable state induces a small charge transfer and precedes the final adsorption structure.We thank the Spanish MINECO (projects MAT2011-23627, MAT2011-26534, PLE2009-0061, CSD2007-00041, CSD2010-00024) for financial support.Peer reviewe

    Role of the Pinning Points in epitaxial Graphene Moiré Superstructures on the Pt(111) Surface

    Full text link
    The intrinsic atomic mechanisms responsible for electronic doping of epitaxial graphene Moirés on transition metal surfaces is still an open issue. To better understand this process we have carried out a first-principles full characterization of the most representative Moiré superstructures observed on the Gr/Pt(111) system and confronted the results with atomically resolved scanning tunneling microscopy experiments. We find that for all reported Moirés the system relaxes inducing a non-negligible atomic corrugation both, at the graphene and at the outermost platinum layer. Interestingly, a mirror “anti-Moiré” reconstruction appears at the substrate, giving rise to the appearance of pinning-points. We show that these points are responsible for the development of the superstructure, while charge from the Pt substrate is injected into the graphene, inducing a local n-doping, mostly localized at these specific pinning-point positions.We acknowledge funding from the Spanish MINECO (Grant MAT2014-54231-C4-1-P), the EU via the ERC-Synergy Program (Grant ERC-2013-SYG-610256 Nanocosmos), and computing resources from CTI-CSIC. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant agreement No. 604391 Graphene Flagship. J.I.M. acknowledges funding from both the CSIC-JaeDoc Fellowship Program (co-funded by the European Social Fund) and Nanocosmos. P.M. was supported by the “Rafael Calvo Rodés” Program.Peer reviewe

    Substrate-enhanced supercooling in AuSi eutectic droplets

    Full text link
    International audienceThe phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point(1)-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation(2,3). For liquids in contact with solids, crystalline surfaces induce layering of the adjacent atoms in the liquid(4,5) and may prevent or lower supercooling(6). This seed effect is supposed to depend on the local lateral order adopted in the last atomic layers of the liquid in contact with the crystal. Although it has been suggested that there might be a direct coupling between surface-induced lateral order and supercooling(6), no experimental observation of such lateral ordering at interfaces is available(6). Here we report supercooling in gold-silicon (AuSi) eutectic droplets, enhanced by a Au-induced (6 x 6) reconstruction of the Si(111) substrate. In situ X-ray scattering and ab initio molecular dynamics reveal that pentagonal atomic arrangements of Au atoms at this interface favour a lateral-ordering stabilization process of the liquid phase. This interface-enhanced stabilization of the liquid state shows the importance of the solid-liquid interaction for the structure of the adjacent liquid layers. Such processes are important for present and future technologies, as fluidity and crystallization play a key part in soldering and casting, as well as in processing and controlling chemical reactions for microfluidic devices or during the vapour-liquid-solid growth of semiconductor nanowire
    corecore