68 research outputs found

    The impact of the Pull of the Recent on extant elasmobranchs

    Get PDF
    Modern elasmobranchs have a long evolutionary history and an abundant fossil record that consists mainly of teeth. Many fossil taxa have living representatives. However, the representation of extant taxa in the fossil record is unknown. To begin to understand the geological history of extant elasmobranchs, we here assess the quality of their fossil record. We do so by assessing the Pull of the Recent (POR). The POR can bias the fossil record because the rather complete record of living taxa allows palaeontologists to identify fossil members of the modern clades and to bridge time bins where fossils are absent. We assessed the impact of the POR by quantifying the proportion of extant elasmobranchs that have a fossil record, but do not occur in the last 5 million years (Pliocene and Pleistocene). We found that the POR does not affect orders and families, but it does affect 24% of elasmobranch genera. Within the different elasmobranch orders, the Lamniformes display the most complete generic fossil record, with no impact of the POR. Although modest, the impact of the POR in extant elasmobranch genera is higher than that found in other taxa. Overall, the geological history of elasmobranchs contradicts the usual assumption that the fossil record becomes worse backwards in time. This is the case across geographical regions and tooth size, further suggesting that sampling intensity and outcrop availability might explain the POR effect on sharks and rays

    The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling

    Full text link
    Although shark teeth are abundant in the fossil record, their bodies are rarely preserved. Thus, our understanding of the anatomy of the extinct Otodus megalodon remains rudimentary. We used an exceptionally well-preserved fossil to create the first three-dimensional model of the body of this giant shark and used it to infer its movement and feeding ecology. We estimate that an adult O. megalodon could cruise at faster absolute speeds than any shark species today and fully consume prey the size of modern apex predators. A dietary preference for large prey potentially enabled O. megalodon to minimize competition and provided a constant source of energy to fuel prolonged migrations without further feeding. Together, our results suggest that O. megalodon played an important ecological role as a transoceanic superpredator. Hence, its extinction likely had large impacts on global nutrient transfer and trophic food webs

    The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling

    Get PDF
    Although shark teeth are abundant in the fossil record, their bodies are rarely preserved. Thus, our understanding of the anatomy of the extinct Otodus megalodon remains rudimentary. We used an exceptionally well-preserved fossil to create the first three-dimensional model of the body of this giant shark and used it to infer its movement and feeding ecology. We estimate that an adult O. megalodon could cruise at faster absolute speeds than any shark species today and fully consume prey the size of modern apex predators. A dietary preference for large prey potentially enabled O. megalodon to minimize competition and provided a constant source of energy to fuel prolonged migrations without further feeding. Together, our results suggest that O. megalodon played an important ecological role as a transoceanic superpredator. Hence, its extinction likely had large impacts on global nutrient transfer and trophic food webs

    The ecological causes of functional distinctiveness in communities

    Full text link
    Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages

    Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama

    Get PDF
    BACKGROUND: As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. METHODOLOGY/PRINCIPAL FINDINGS: We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. CONCLUSIONS/SIGNIFICANCE: We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories

    Multidimensional primate niche space sheds light on interspecific competition in primate evolution

    Get PDF
    Characterising how the totality of primate diversity is distributed across the order, and how it evolved, is challenging because diversity in individual traits often show opposing phylogenetic patterns. A species’ combination of traits can be conceptualised as its ‘niche’. Here, we describe and analyse seven-dimensional niche space, comprising 11 traits, for 191 primate species. Multifaceted diversity is distributed unequally among taxonomic groups. Cercopithecoidea and Hominidae occupy the largest areas of niche space, and are the most diverse families; platyrrhine families occupy small areas, and this space overlaps with strepsirrhines. The evolution of species’ locations in niche space is regulated by selection for adaptive optima in trait combinations. Given that niche similarity results in interspecific competition, we quantify two measures of species’ niche locations relative to others. We find that omnivores, frugivores, and species tolerating higher temperatures experience stronger interspecific competition. Hominidae occupation of niche space suggests competitive exclusion from niches by Cercopithecoidea over evolutionary time; but living great apes experience the lowest levels of interspecific competition. Callitrichids experience the highest levels of interspecific competition. Our results provide a standardised measure of primate niches that sheds light on the partitioning and evolution of primate diversity, and how this is driven by interspecific competition
    • …
    corecore