14 research outputs found
Anti-Parasitic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges
Actinomycetes are prolific producers of pharmacologically important compounds accounting for about 70% of the naturally derived antibiotics that are currently in clinical use. In this study, we report on the isolation of Streptomyces sp. strains from Mediterranean sponges, on their secondary metabolite production and on their screening for anti-infective activities. Bioassay-guided isolation and purification yielded three previously known compounds namely, cyclic depsipeptide valinomycin, indolocarbazole alkaloid staurosporine and butenolide. This is the first report of the isolation of valinomycin from a marine source. These compounds exhibited novel anti-parasitic activities specifically against Leishmania major (valinomycin IC50 < 0.11 μM; staurosporine IC50 5.30 μM) and Trypanosoma brucei brucei (valinomycin IC50 0.0032 μM; staurosporine IC50 0.022 μM; butenolide IC50 31.77 μM). These results underscore the potential of marine actinomycetes to produce bioactive compounds as well as the re-evaluation of previously known compounds for novel anti-infective activities
New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities †
Four new tetromycin derivatives, tetromycins 1–4 and a previously known one, tetromycin B (5) were isolated from Streptomyces axinellae Pol001T cultivated from the Mediterranean sponge Axinella polypoides. Structures were assigned using extensive 1D and 2D NMR spectroscopy as well as HRESIMS analysis. The compounds were tested for antiparasitic activities against Leishmania major and Trypanosoma brucei, and for protease inhibition against several cysteine proteases such as falcipain, rhodesain, cathepsin L, cathepsin B, and viral proteases SARS-CoV Mpro, and PLpro. The compounds showed antiparasitic activities against T. brucei and time-dependent inhibition of cathepsin L-like proteases with Ki values in the low micromolar range
Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes
Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents
An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris
Candida auris is an emerging fungal pathogen that exhibits resistance to multiple drugs, including the most commonly prescribed antifungal, fluconazole. Here, we use a combinatorial screening approach to identify a bis-benzodioxolylindolinone (azoffluxin) that synergizes with fluconazole against C. auris. Azoffluxin enhances fluconazole activity through the inhibition of efflux pump Cdr1, thus increasing intracellular fluconazole levels. This activity is conserved across most C. auris clades, with the exception of clade III. Azoffluxin also inhibits efflux in highly azole-resistant strains of Candida albicans, another human fungal pathogen, increasing their susceptibility to fluconazole. Furthermore, azoffluxin enhances fluconazole activity in mice infected with C. auris, reducing fungal burden. Our findings suggest that pharmacologically targeting Cdr1 in combination with azoles may be an effective strategy to control infection caused by azole-resistant isolates of C. auris.U01 TR002625 - NCATS NIH HHS; MOP-133636 - CIHR; U19 AI110818 - NIAID NIH HHS; R35 GM118173 - NIGMS NIH HHS; FDN-154288 - CIHR; R01 AI141202 - NIAID NIH HHS; R01 AI073289 - NIAID NIH HHSPublished versio
Anti-protease and Immunomodulatory Activities of Bacteria Associated with Caribbean Sponges
Marine sponges and their associated bacteria have been proven to be a rich source of novel secondary metabolites with therapeutic usefulness in cancer, infection, and autoimmunity. In this study, 79 strains belonging to 20 genera of the order Actinomycetales and seven strains belonging to two genera of the order Sphingomonadales were cultivated from 18 different Caribbean sponges and identified by 16S rRNA gene sequencing. Seven of these strains are likely to represent novel species. Crude extracts from selected strains were found to exhibit protease inhibition against cathepsins B and L, rhodesain, and falcipain-2 as well as immunomodulatory activities such as induction of cytokine release by human peripheral blood mononuclear cells. These results highlight the significance of marine sponge-associated bacteria to produce bioactive secondary metabolites with therapeutic potential in the treatment of infectious diseases and disorders of the immune system
Natural Products Repertoire of the Red Sea
Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities