15 research outputs found

    Assessment of cochlear synaptopathy by electrocochleography to low frequencies in a preclinical model and human subjects

    Get PDF
    Cochlear synaptopathy is the loss of synapses between the inner hair cells and the auditory nerve despite survival of sensory hair cells. The findings of extensive cochlear synaptopathy in animals after moderate noise exposures challenged the long-held view that hair cells are the cochlear elements most sensitive to insults that lead to hearing loss. However, cochlear synaptopathy has been difficult to identify in humans. We applied novel algorithms to determine hair cell and neural contributions to electrocochleographic (ECochG) recordings from the round window of animal and human subjects. Gerbils with normal hearing provided training and test sets for a deep learning algorithm to detect the presence of neural responses to low frequency sounds, and an analytic model was used to quantify the proportion of neural and hair cell contributions to the ECochG response. The capacity to detect cochlear synaptopathy was validated in normal hearing and noise-exposed animals by using neurotoxins to reduce or eliminate the neural contributions. When the analytical methods were applied to human surgical subjects with access to the round window, the neural contribution resembled the partial cochlear synaptopathy present after neurotoxin application in animals. This result demonstrates the presence of viable hair cells not connected to auditory nerve fibers in human subjects with substantial hearing loss and indicates that efforts to regenerate nerve fibers may find a ready cochlear substrate for innervation and resumption of function

    Subjective Benefits of Bimodal Listening in Cochlear Implant Recipients with Asymmetric Hearing Loss

    Get PDF
    Objective: To investigate the influence of cochlear implant (CI) use on subjective benefits in quality of life in cases of asymmetric hearing loss (AHL). Study Design: Prospective clinical trial. Setting: Tertiary academic center. Subjects and Methods: Subjects included CI recipients with AHL (n = 20), defined as moderate-to-profound hearing loss in the affected ear and mild-to-moderate hearing loss in the contralateral ear. Quality of life was assessed with the Speech, Spatial, and Qualities of Hearing Scale (SSQ) pragmatic subscales, which assess binaural benefits. Subjective benefit on the pragmatic subscales was compared to word recognition in quiet and spatial hearing abilities (ie, masked sentence recognition and localization). Results: Subjects demonstrated an early, significant improvement (P <.01) in abilities with the CI as compared to preoperative abilities on the SSQ pragmatic subscales by the 1-month interval. Perceived abilities were either maintained or continued to improve over the study period. There were no significant correlations between results on the Speech in Quiet subscale and word recognition in quiet, the Speech in Speech Contexts subscale and masked sentence recognition, or the Localization subscale and sound field localization. Conclusions: CI recipients with AHL report a significant improvement in quality of life as measured by the SSQ pragmatic subscales over preoperative abilities. Reported improvements are observed as early as 1 month postactivation, which likely reflect the binaural benefits of listening with bimodal stimulation (CI and contralateral hearing aid). The SSQ pragmatic subscales may provide a more in-depth insight into CI recipient experience as compared to behavioral sound field measures alone

    Cochlear Implantation in Cases of Asymmetric Hearing Loss: Subjective Benefit, Word Recognition, and Spatial Hearing

    Get PDF
    A prospective clinical trial evaluated the effectiveness of cochlear implantation in adults with asymmetric hearing loss (AHL). Twenty subjects with mild-to-moderate hearing loss in the better ear and moderate-to-profound hearing loss in the poorer ear underwent cochlear implantation of the poorer hearing ear. Subjects were evaluated preoperatively and at 1, 3, 6, 9, and 12 months post-activation. Preoperative performance was evaluated unaided, with traditional hearing aids (HAs) or with a bone-conduction HA. Post-activation performance was evaluated with the cochlear implant (CI) alone or in combination with a contralateral HA (bimodal). Test measures included subjective benefit, word recognition, and spatial hearing (i.e., localization and masked sentence recognition). Significant subjective benefit was reported as early as the 1-month interval, indicating better performance with the CI compared with the preferred preoperative condition. Aided word recognition with the CI alone was significantly improved at the 1-month interval compared with preoperative performance with an HA and continued to improve through the 12-month interval. Subjects demonstrated early, significant improvements in the bimodal condition on the spatial hearing tasks compared with baseline preoperative performance tested unaided. The magnitude of the benefit was reduced for subjects with AHL when compared with published data on CI users with normal hearing in the contralateral ear; this finding may reflect significant differences in age at implantation and hearing sensitivity across cohorts
    corecore