29 research outputs found

    Installed performance assessment of a boundary layer ingesting distributed propulsion system at design point

    Get PDF
    Boundary layer ingesting systems have been proposed as a concept with great potential for reducing the fuel consumption of conventional propulsion systems and the overall drag of an aircraft. These studies have indicated that if the aerodynamic and efficiency losses were minimised, the propulsion system demonstrated substantial power consumption benefits in comparison to equivalent propulsion systems operating in free stream flow. Previously assessed analytical methods for BLI simulation have been from an uninstalled perspective. This research will present the formulation of an rapid analytical method for preliminary design studies which evaluates the installed performance of a boundary layer ingesting system. The method uses boundary layer theory and one dimensional gas dynamics to assess the performance of an integrated system. The method was applied to a case study of the distributed propulsor array of a blended wing body aircraft. There was particular focus on assessment how local flow characteristics influence the performance of individual propulsors and the propulsion system as a whole. The application of the model show that the spanwise flow variation has a significant impact on the performance of the array as a whole. A clear optimum design point is identified which minimises the power consumption for an array with a fixed configuration and net propulsive force requirement. In addition, the sensitivity of the system to distortion related losses is determined and a point is identi ed where a conventional free-stream propulsor is the lower power option. Power saving coefficient for the configurations considered is estimated to lie in the region of 15%

    Techno economic and environmental assessment of wind assisted marine propulsion systems

    Get PDF
    In recent years, the increase in marine fuel prices coupled with stricter regulations on pollutant emissions set by the International Maritime Organization have promoted the research in new propulsion technologies and the utilisation of cleaner fuels. This paper describes a novel methodology to enable quantifying and evaluating the environmental and economic benefits that new technologies and fuels could allow in the marine sector. The proposed techno economic and environmental analysis approach enables consistent assessment of different traditional propulsion systems (diesel engine and gas turbine) when operated in conjunction with a novel environmental friendly technology, such as a vertical axis wind turbine. The techno-economic and environmental assessment is focused on the potential reduction in fuel consumption and pollutant emissions that may be accrued while operating on typical Sea Lines Of Communication (Mediterranean, North Sea, Atlantic). The study demonstrates the benefits of the installation of two vertical axis wind turbines on the deck of a ship in conjunction with conventional power plants. The analysis indicates that the performance of the wind turbines and the corresponding benefits strongly depend on the routes and environment in which they operate (therefore favourable wind conditions) allowing fuel savings from 14% (in the gas turbine case) to 16% (in the diesel engine case). The study also indicates that possible benefits may diminish for weak wind conditions. The results reported in this paper establish the economic benefits of installing vertical axis wind turbines in conjunction with conventional technology (Diesel and Gas Turbine Power plants) when installed on a ship travelling through the Atlantic Ocean. The primary purpose of this study is to introduce a methodology to demonstrate the application, performance and economic benefits of the technology at a preliminary design phase and further form a foundation for more elaborate analysis on the subject in the future

    Method for simulating the performance of a boundary layer ingesting propulsion system at design and off-design

    Get PDF
    Boundary layer ingestion has emerged as a potential propulsion concept on novel aircraft configurations for the future. As these concepts progress, preliminary design tools are required that enable the simulation of these aircraft and the rapid analysis of multiple configurations. Simulation tools for boundary layer ingesting propulsion systems tend to focus on proving performance benefits at design point. However, the simulation of aircraft configurations that utilise boundary layer ingestion requires a method to simulate the propulsion system at a range of flight conditions other than design point. A tool is therefore required to enable simulations at off-design. This research presents a work flow to simulate a boundary layer ingesting propulsion system at design and off-design. The process is intended as a tool for design space exploration and the rapid analysis of concepts at the conceptualisation phase. Boundary layer calculations have been combined with conventional 1-D gas turbine performance methods to predict performance of a propulsion system at design point. This method is then extended to enable simulations at off-design conditions for a range of flight conditions or propulsion system power settings. The formulation provides a thrust-drag representation that supports conventional aircraft simulation tools. A case study of an aircraft configuration which utilises an array of boundary layer ingesting propulsors is used to demonstrate the process. The performance of individual propulsors in the array is compared at off-design. Simulations found that, although each propulsor was sized for the same propulsive force at design point, off-design performance diverged depending on operating conditions. In addition, the performance of the propulsor array as a whole was predicted as a function of altitude and Mach number. The case study is used to draw general conclusions on the performance characteristics of a boundary layer ingesting propulsor

    Dealing with missing data for prognostic purposes

    Get PDF
    Centrifugal compressors are considered one of the most critical components in oil industry, making the minimization of their downtime and the maximization of their availability a major target. Maintenance is thought to be a key aspect towards achieving this goal, leading to various maintenance schemes being proposed over the years. Condition based maintenance and prognostics and health management (CBM/PHM), which is relying on the concepts of diagnostics and prognostics, has been gaining ground over the last years due to its ability of being able to plan the maintenance schedule in advance. The successful application of this policy is heavily dependent on the quality of data used and a major issue affecting it, is that of missing data. Missing data's presence may compromise the information contained within a set, thus having a significant effect on the conclusions that can be drawn from the data, as there might be bias or misleading results. Consequently, it is important to address this matter. A number of methodologies to recover the data, called imputation techniques, have been proposed. This paper reviews the most widely used techniques and presents a case study with the use of actual industrial centrifugal compressor data, in order to identify the most suitable ones

    Sub-idle modelling of gas turbines : altitude relight and windmilling

    Get PDF
    Gas turbine sub-idle performance modelling is still in an early development stage and this research aims to provide and improve present techniques, for modelling of windmilling and transient windmilling relights, through to groundstart simulations. Engine ATF data was studied and used to align models created within this research for low and high bypass engines, and compare these models simulation results. Methods for the extrapolation of component characteristics are improved and performed in linearised parameter form, and the most efficient approach discussed. The mixer behaviour is analysed and recommendations of off-design mixer behaviour representation in a sub-idle model are proposed and performed within the modelling. Combustion at sub-idle conditions is investigated with regards to the loading parameter definition, and also its representation for the influence of evaporation rate being limiting to overall combustion efficiency. A method is proposed on extrapolating and representation of the combustion characteristic. Compressor behaviour and the blade torques at locked rotor and windmilling conditions are studied using 3D CFD, producing insight and discussion on CFD suitability and what it can offer at these operating conditions. From the CFD studies generic loss coefficients were created for all compressor blades, from which a zero speed is created for the whole compressor, from a theoretical stage stacking calculation. This zero-speed curve is shown to allow interpolation of component characteristics to the sub-idle region, improving the definition and a predictive approach. A windmilling conditions cascade test rig is proposed, designed and built for validating the CFD loss coefficients. The findings and discussions within this thesis provide useful reference material on this complicated and little documented area of research. The modelling and methods proposed, provide great advancement of the research area, along with further integration of the Cranfield UTC in performance with Rolls-Royce.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Dealing with missing data for prognostic purposes

    Get PDF
    © 2016 IEEE. Centrifugal compressors are considered one of the most critical components in oil industry, making the minimisation of their downtime and the maximisation of their availability a major target. Maintenance is thought to be a key aspect towards achieving this goal, leading to various maintenance schemes being proposed over the years. Condition based maintenance and prognostics and health management (CBM/PHM), which is relying on the concepts of diagnostics and prognostics, has been gaining ground over the last years due to its ability of being able to plan the maintenance schedule in advance. The successful application of this policy is heavily dependent on the quality of data used and a major issue affecting it, is that of missing data. Missing data's presence may compromise the information contained within a set, thus having a significant effect on the conclusions that can be drawn from the data, as there might be bias or misleading results. Consequently, it is important to address this matter. A number of methodologies to recover the data, called imputation techniques, have been proposed. This paper reviews the most widely used techniques and presents a case study with the use of actual industrial centrifugal compressor data, in order to identify the most suitable ones

    Reciprocating compressor prognostics of an instantaneous failure mode utilising temperature only measurements

    Get PDF
    Reciprocating compressors are critical components in the oil and gas sector, though their maintenance cost is known to be relatively high. Compressor valves are the weakest component, being the most frequent failure mode, accounting for almost half the maintenance cost. One of the major targets in industry is minimisation of downtime and cost, while maximising availability and safety of a machine, with maintenance considered a key aspect in achieving this objective. The concept of Condition Based Maintenance and Prognostics and Health Management (CBM/PHM) which is founded on the diagnostics and prognostics principles, is a step towards this direction as it offers a proactive means for scheduling maintenance. Despite the fact that diagnostics is an established area for reciprocating compressors, to date there is limited information in the open literature regarding prognostics, especially given the nature of failures can be instantaneous. This work presents an analysis of prognostic performance of several methods (multiple linear regression, polynomial regression, K-Nearest Neighbours Regression (KNNR)), in relation to their accuracy and variability, using actual temperature only valve failure data, an instantaneous failure mode, from an operating industrial compressor. Furthermore, a variation for Remaining Useful Life (RUL) estimation based on KNNR, along with an ensemble technique merging the results of all aforementioned methods are proposed. Prior to analysis, principal components analysis and statistical process control were employed to create !! and ! metrics, which were proposed to be used as health indicators reflecting degradation process of the valve failure mode and are proposed to be used for direct RUL estimation for the first time. Results demonstrated that even when RUL is relatively short due to instantaneous nature of failure mode, it is feasible to perform good RUL estimates using the proposed techniques

    Abating CO2 and non-CO2 emissions with hydrogen propulsion

    Get PDF
    This contribution focuses on the abatement with hydrogen of CO2 and non-CO2 emissions. It is agenda-setting in two respects. Firstly, it challenges the globally accepted hydrocarbon sustainable aviation fuel (SAF) pathway to sustainability and recommends that our industry accelerates along the hydrogen pathway to ‘green’ aviation. Secondly, it reports a philosophical and analytical investigation of appropriate accuracy on abatement strategies for nitrogen oxides and contrails of large hydrogen airliners. For the second contribution, a comparison is made of nitrogen oxide emissions and contrail avoidance options of two hydrogen airliners and a conventional airliner of similar passenger capacity. The hydrogen aircraft are representative of the first and second innovation waves where the main difference is the weight of the hydrogen tanks. Flights of 1000, 2000, 4000 and 8000 nautical miles are explored. Cranfield’s state of the art simulators for propulsion system integration and gas turbine performance (Orion and Turbomatch) were used for this. There are two primary contributions to knowledge. The first is a new set of questions to be asked of SAF and hydrogen decarbonising features. The second is the quantification of the benefits from hydrogen on non-CO2 emissions. For the second generation of long-range hydrogen-fuelled aircraft having gas turbine propulsion, lighter tanks (needing less thrust and lower gas temperatures) are anticipated to reduce NOx emissions by over 20%; in the case of contrails, the preliminary findings indicate that regardless of the fuel, contrails could largely be avoided with fuel-burn penalties of a few per cent. Mitigating action is only needed for a small fraction of flights. For conventional aircraft this penalty results in more CO2, while for hydrogen aircraft the additional emission is water vapour. The conclusion is that our research community should continue to consider hydrogen as the key ‘greening’ option for aviation, notwithstanding the very significant costs of transition

    Increased retention of Polyaromatic Hydrocarbons (PAH) in soils induced by soil treatment with humic substances

    No full text

    Effect of native and exogenous humic substances on adsorption of PAHs on soils

    No full text
    corecore