3 research outputs found

    Development and Validation of a Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Glaesserella (Haemophilus) parasuis

    No full text
    Glaesserella parasuis is a fastidious pathogen that colonizes the respiratory tract of pigs and can lead to considerable economic losses in pig production. Therefore, a rapid detection assay for the pathogen, preferably applicable in the field, is important. In the current study, we developed a new and improved detection method using loop-mediated isothermal amplification (LAMP). This assay, which targets the infB gene, was tested on a collection of 60 field isolates of G. parasuis comprising 14 different serovars. In addition, 63 isolates from seven different closely related species of the family Pasteurellaceae, including A. indolicus, A. porcinus, and A. minor, and a species frequently found in the respiratory tract of pigs were used for exclusivity experiments. This assay showed an analytical specificity of 100% (both inclusivity and exclusivity) and an analytical sensitivity of 10 fg/µL. In further steps, 36 clinical samples were tested with the LAMP assay. An agreement of 77.1 (95% CI: 59.9, 89.6) and 91.4% (95% CI: 75.9, 98.2) to the culture-based and PCR results was achieved. The mean limit of detection for the spiked bronchoalveolar lavage fluid was 2.58 × 102 CFU/mL. A colorimetric assay with visual detection by the naked eye was tested to provide an alternative method in the field and showed the same sensitivity as the fluorescence-based LAMP assay. Overall, the optimized LAMP assay represents a fast and reliable method and is suitable for detecting G. parasuis in the laboratory environment or in the field

    Companion Animals in Zoonoses Research – Ethical Considerations

    Full text link
    Non-human animals are commonly classified according to their “role”, such as “livestock”, “wild” or “companion” animals. But what if those classifications overlap? This article presents a report of the retreat week “ZooCan – Zoonoses of companion animals as case study for animal ethics” at the University of Veterinary Medicine Hannover, Germany, in November 2022. The workshop included participants from different European countries with interdisciplinary backgrounds (animal law, bioethics, epidemiology, philosophy, biology and veterinary medicine). We address ethically relevant issues that emerge when companion animals are used as research animals, particularly in zoonoses research. The outcomes of the multi-disciplinary approach are used to i) define criteria to classify “companion” and “research” animals, ii) provide guidance to overcome the challenges with classificational overlaps, iii) give insights into cutting-edge zoonoses research with an example of SARS-CoV-2 in cats, and iv) discuss animal ethics approaches with regard to classifications

    Scent dog identification of SARS-CoV-2 infections in different body fluids

    No full text
    Background!#!The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies.!##!Methods!#!Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study.!##!Results!#!Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5-94.44%) and specificity of 95% (95% CI: 93.4-96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67-100%) and 98% (95% CI: 94.87-100%) for urine, 91% (95% CI: 71.43-100%) and 94% (95% CI: 90.91-97.78%) for sweat, 82% (95% CI: 64.29-95.24%), and 96% (95% CI: 94.95-98.9%) for saliva respectively.!##!Conclusions!#!The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient's symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals
    corecore