19 research outputs found

    FMRP regulates presynaptic localization of neuronal voltage gated calcium channels

    Get PDF
    Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism, results from the loss of fragile X mental retardation protein (FMRP). We have recently identified a direct interaction of FMRP with voltage-gated Ca2+ channels that modulates neurotransmitter release. In the present study we used a combination of optophysiological tools to investigate the impact of FMRP on the targeting of voltage-gated Ca2+ channels to the active zones in neuronal presynaptic terminals. We monitored Ca2+ transients at synaptic boutons of dorsal root ganglion (DRG) neurons using the genetically-encoded Ca2+ indicator GCaMP6f tagged to synaptophysin. We show that knock-down of FMRP induces an increase of the amplitude of the Ca2+ transient in functionally-releasing presynaptic terminals, and that this effect is due to an increase of N-type Ca2+ channel contribution to the total Ca2+ transient. Dynamic regulation of CaV2.2 channel trafficking is key to the function of these channels in neurons. Using a CaV2.2 construct with an α-bungarotoxin binding site tag, we further investigate the impact of FMRP on the trafficking of CaV2.2 channels. We show that forward trafficking of CaV2.2 channels from the endoplasmic reticulum to the plasma membrane is reduced when co-expressed with FMRP. Altogether our data reveal a critical role of FMRP on localization of CaV channels to the presynaptic terminals and how its defect in a context of FXS can profoundly affect synaptic transmission

    After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination

    Get PDF
    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration
    corecore