838 research outputs found
Simulating disordered quantum systems via dense and sparse restricted Boltzmann machines
In recent years, generative artificial neural networks based on restricted
Boltzmann machines (RBMs) have been successfully employed as accurate and
flexible variational wave functions for clean quantum many-body systems. In
this article we explore their use in simulations of disordered quantum spin
models. The standard dense RBM with all-to-all inter-layer connectivity is not
particularly appropriate for large disordered systems, since in such systems
one cannot exploit translational invariance to reduce the amount of parameters
to be optimized. To circumvent this problem, we implement sparse RBMs, whereby
the visible spins are connected only to a subset of local hidden neurons, thus
reducing the amount of parameters. We assess the performance of sparse RBMs as
a function of the range of the allowed connections, and compare it with the one
of dense RBMs. Benchmark results are provided for two sign-problem free
Hamiltonians, namely pure and random quantum Ising chains. The RBM ansatzes are
trained using the unsupervised learning scheme based on projective quantum
Monte Carlo (PQMC) algorithms. We find that the sparse connectivity facilitates
the training process and allows sparse RBMs to outperform the dense
counterparts. Furthermore, the use of sparse RBMs as guiding functions for PQMC
simulations allows us to perform PQMC simulations at a reduced computational
cost, avoiding possible biases due to finite random-walker populations. We
obtain unbiased predictions for the ground-state energies and the magnetization
profiles with fixed boundary conditions, at the ferromagnetic quantum critical
point. The magnetization profiles agree with the Fisher-de Gennes scaling
relation for conformally invariant systems, including the scaling dimension
predicted by the renormalization-group analysis.Comment: 11 pages, 5 figure
Coordination networks incorporating halogen-bond donor sites and azobenzene groups
Two Zn coordination networks, [Zn(1)(Py)2]2(2-propanol)n (3) and [Zn(1)2(Bipy)2](DMF)2n (4), incorporating halogen-bond (XB) donor sites and azobenzene groups have been synthesized and fully characterized. Obtaining 3 and 4 confirms that it is possible to use a ligand wherein its coordination bond acceptor sites and XB donor sites are on the same molecular scaffold (i.e., an aromatic ring) without interfering with each other. We demonstrate that XBs play a fundamental role in the architectures and properties of the obtained coordination networks. In 3, XBs promote the formation of 2D supramolecular layers, which, by overlapping each other, allow the incorporation of 2-propanol as a guest molecule. In 4, XBs support the connection of the layers and are essential to firmly pin DMF solvent molecules through I⋯O contacts, thus increasing the stability of the solvated systems
Chirality in halogen-bonded supramolecular architectures
Abstracts of the XXII IUCr Congres
Equation of state of an interacting Bose gas at finite temperature: a Path Integral Monte Carlo study
By using exact Path Integral Monte Carlo methods we calculate the equation of
state of an interacting Bose gas as a function of temperature both below and
above the superfluid transition. The universal character of the equation of
state for dilute systems and low temperatures is investigated by modeling the
interatomic interactions using different repulsive potentials corresponding to
the same s-wave scattering length. The results obtained for the energy and the
pressure are compared to the virial expansion for temperatures larger than the
critical temperature. At very low temperatures we find agreement with the
ground-state energy calculated using the diffusion Monte Carlo method.Comment: 7 pages, 6 figure
2-Iodo-imidazolium receptor binds oxoanions via charge-assisted halogen bonding.
A detailed (1)H-NMR study of the anion binding properties of the 2-iodo-imidazolium receptor 1 in DMSO allows to fully attribute the observed affinities to strong charge-assisted C-IX(-) halogen bonding (XB). Stronger binding was observed for oxoanions over halides. Phosphate, in particular, binds to 1 with an association constant of ca. 10(3) M(-1), which is particularly high for a single X-bond. A remarkably short C-IO(-) contact is observed in the structure of the salt 1·H(2)PO(4)(-)
Integration of robotic systems in a packaging machine: A tool for design and simulation of efficient motion trajectories
In this paper, the advantages of CACSD (Computer Aided Control System Design) tools for integrating a robotic system in a packaging machine are illustrated. Beside the mechanical integration of the robot into the machine architecture, it is necessary a functional integration, that requires a precise synchronization with the other parts of the system. In the proposed application, a robot with a parallel kinematics is used for pick-and-place tasks between two conveyor belts. It is therefore necessary a proper motion planning which allows to synchronize the grasp and release phases with the conveyor belts, avoiding obstacles and guaranteeing the compliance with bounds on velocity, acceleration and limits in the workspace. A trajectory composed by quintic polynomials has been considered and a specific tool has been designed in the Matlab environment, which allows to modify the parameters of the trajectory and to analyze the obtained motion profiles from both the kinematic and dynamic point of view
Tumor Location in the Head/Uncinate Process and Presence of Fibrosis Impair the Adequacy of Endoscopic Ultrasound-Guided Tissue Acquisition of Solid Pancreatic Tumors
Endoscopic ultrasound-guided tissue acquisition (EUS-TA) of solid pancreatic tumors shows optimal specificity despite fair sensitivity, with an overall suboptimal diagnostic yield. We aim to quantify the adequacy and accuracy of EUS-TA and assess predictive factors for success, focusing on the presence and degree of specimen fibrosis. All consecutive EUS-TA procedures were retrieved, and the specimens were graded for sample adequacy and fibrosis. The results were evaluated according to patients’ and tumor characteristics and the EUS-TA technique. In total, 407 patients (59% male, 70 [63–77] year old) were included; sample adequacy and diagnostic accuracy were 90.2% and 94.7%, respectively. Fibrosis was significantly more represented in tumors located in the head/uncinate process (p = 0.001). Tumor location in the head/uncinate (OR 0.37 [0.14–0.99]), number of needle passes ≥ 3 (OR 4.53 [2.22–9.28]), and the use of cell block (OR 8.82 [3.23–23.8]) were independently related to adequacy. Severe fibrosis was independently related to false negative results (OR 8.37 [2.33–30.0]). Pancreatic tumors located in the head/uncinate process showed higher fibrosis, resulting in EUS-TA with lower sample adequacy and diagnostic accuracy. We maintain that three or more needle passes and cell block should be done to increase the diagnostic yield
Azobenzene-based difunctional halogen-bond donor: Towards the engineering of photoresponsive co-crystals
Halogen bonding is emerging as a powerful non-covalent interaction in the context of supramolecular photoresponsive materials design, particularly due to its high directionality. In order to obtain further insight into the solid-state features of halogen-bonded photoactive molecules, three halogen-bonded co-crystals containing an azobenzene-based difunctional halogen-bond donor molecule, (E)-bis(4-iodo-2,3,5,6-tetrafluorophenyl)diazene, C12F8I2N2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The crystal structure of the non-iodinated homologue (E)-bis(2,3,5,6- tetrafluorophenyl)diazene, C12H2F8N2, is also reported. It is demonstrated that the studied halogen-bond donor molecule is a reliable tecton for assembling halogen-bonded co-crystals with potential photoresponsive behaviour. The azo group is not involved in any specific intermolecular interactions in any of the co-crystals studied, which is an interesting feature in the context of enhanced photoisomerization behaviour and photoactive properties of the material systems. © 2014 International Union of Crystallography
- …