87 research outputs found
S 47445 counteracts the behavioral manifestations and hippocampal neuroplasticity changes in bulbectomized mice
S 47445 is a positive allosteric modulator of glutamate AMPA-type receptors that possesses procognitive, neurotrophic and enhancing synaptic plasticity properties. Its chronic administration promotes antidepressant- and anxiolytic-like effects in different rodent models of depression. We have evaluated the behavioral effects of S 47445 in the bilateral olfactory bulbectomy mice model (OB) and the adaptive changes in those proteins associated to brain neuroplasticity (BDNF and mTOR pathway). Following OB surgery, adult C57BL/6J male mice were chronically administered S 47445 (1, 3 and 10?mg/kg/day; i.p.) and fluoxetine (18?mg/kg/day; i.p.), and then behaviorally tested in the open field test. Afterwards, the expression levels of BDNF, mTOR, phospho-mTOR, 4EBP1 and phospho-4EBP1 were evaluated in hippocampus and prefrontal cortex. Both drugs reduced the OB-induced locomotor activity, a predictive outcome of antidepressant efficacy, with a similar temporal pattern of action. S 47445, but not fluoxetine, showed an anxiolytic effect as reflected by an increased central activity. Chronic administration of S 47445 reversed OB-induced changes in BDNF and phopho-mTOR expression in hippocampus but not in prefrontal cortex. The chronic administration of S 47445 induced antidepressant- and anxiolytic-like effects at low-medium doses (1 and 3?mg/kg/day, i.p.) associated with the reversal of OB-induced changes in hippocampal BDNF and mTOR signaling pathways.Funding: This work was supported by the Institut de Recherches Internationales Servier and the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER) (grant number SAF2015-67457-R)
Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT4 receptor agonist RS67333
It has been recently suggested that activation of 5-HT4 receptors might exert antidepressant-like effects in rats after 3 d treatment, suggesting a new strategy for developing faster-acting antidepressants. We studied the effects of 3 d and 7 d treatment with the 5-HT4 receptor partial agonist RS67333 (1.5 mg/kg.d) in behavioural tests of chronic efficacy and on neuroplastic-associated changes, such as adult hippocampal neurogenesis, expression of CREB, BDNF, ß-catenin, AKT and 5-HT4 receptor functionality. RS67333 treatment up-regulated hippocampal cell proliferation, ß-catenin expression and pCREB/CREB ratio after 3 d treatment. This short-term treatment also reduced immobility time in the forced swim test (FST), together with a partial reversion of the anhedonic-like state (sucrose consumption after chronic corticosterone). Administration of RS67333 for 7 d resulted in a higher increase in the rate of hippocampal cell proliferation, a significant desensitization of 5-HT4 receptor-coupled adenylate cyclase activity and a more marked increase in the expression of neuroplasticity-related proteins (BDNF, CREB, AKT): these changes reached the same magnitude as those observed after 3 wk administration of classical antidepressants. Consistently, a positive behavioural response in the novelty suppressed feeding (NSF) test and a complete reversion of the anhedonic-like state (sucrose consumption) were also observed after 7 d treatment. These results support the antidepressant-like profile of RS67333 with a shorter onset of action and suggest that this time period of administration (3-7 d) could be a good approximation to experimentally predict the onset of action of this promising strategy.This work was supported by Ministerio de Ciencia e Innovación (SAF-07/61862), Fundación Alicia Koplowitz and Fundación de Investigación Médica Mutua Madrileña.Peer Reviewe
Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT₄ receptor agonist RS67333.
It has been recently suggested that activation of 5-HT4 receptors might exert antidepressant-like effects in rats after 3 d treatment, suggesting a new strategy for developing faster-acting antidepressants. We studied the effects of 3 d and 7 d treatment with the 5-HT4 receptor partial agonist RS67333 (1.5 mg/kg.d) in behavioural tests of chronic efficacy and on neuroplastic-associated changes, such as adult hippocampal neurogenesis, expression of CREB, BDNF, b-catenin, AKT and 5-HT4 receptor functionality. RS67333 treatment up-regulated hippocampal cell proliferation, b-catenin expression and pCREB/CREB ratio after 3 d treatment. This short-term treatment also reduced immobility time in the forced swim test (FST), together with a partial reversion of the anhedonic-like state (sucrose consumption after chronic corticosterone). Administration of RS67333 for 7 d resulted in a higher increase in the rate of hippocampal cell proliferation, a significant desensitization of 5-HT4 receptor-coupled adenylate cyclase activity and a more marked increase in the expression of neuroplasticity-related proteins (BDNF, CREB, AKT): these changes reached the same magnitude as those observed after 3 wk administration of classical antidepressants. Consistently, a positive behavioural response in the novelty suppressed feeding (NSF) test and a complete reversion of the anhedonic-like state (sucrose consumption) were also observed after 7 d treatment. These results support the antidepressant-like profile of RS67333 with a shorter onset of action and suggest that this time period of administration (3–7 d) could be a good approximation to experimentally predict the onset of action of this promising strategy
The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor
reclinical studies support a critical role of 5-HT4 receptors (5-HT4Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT4R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT1AR. Moreover, the implication of 5-HT4Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT4R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT4R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT4R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT4R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT4Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT4RsThis research was supported by Spanish Ministry of Economy and Competitiveness (SAF2011-25020), and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)
Rebound activation of 5-HT neurons following SSRI discontinuation
Cessation of therapy with a selective serotonin (5-HT) reuptake inhibitor (SSRI) is often associated with an early onset and disabling discontinuation syndrome, the mechanism of which is surprisingly little investigated. Here we determined the effect on 5-HT neurochemistry of discontinuation from the SSRI paroxetine. Paroxetine was administered repeatedly to mice (once daily, 12 days versus saline controls) and then either continued or discontinued for up to 5 days. Whereas brain tissue levels of 5-HT and/or its metabolite 5-HIAA tended to decrease during continuous paroxetine, levels increased above controls after discontinuation, notably in hippocampus. In microdialysis experiments continuous paroxetine elevated hippocampal extracellular 5-HT and this effect fell to saline control levels on discontinuation. However, depolarisation (high potassium)-evoked 5-HT release was reduced by continuous paroxetine but increased above controls post-discontinuation. Extracellular hippocampal 5-HIAA also decreased during continuous paroxetine and increased above controls post-discontinuation. Next, immunohistochemistry experiments found that paroxetine discontinuation increased c-Fos expression in midbrain 5-HT (TPH2 positive) neurons, adding further evidence for a hyperexcitable 5-HT system. The latter effect was recapitulated by 5-HT1A receptor antagonist administration although gene expression analysis could not confirm altered expression of 5-HT1A autoreceptors following paroxetine discontinuation. Finally, in behavioural experiments paroxetine discontinuation increased anxiety-like behaviour, which partially correlated in time with the measures of increased 5-HT function. In summary, this study reports evidence that, across a range of experiments, SSRI discontinuation triggers a rebound activation of 5-HT neurons. This effect is reminiscent of neural changes associated with various psychotropic drug withdrawal states, suggesting a common unifying mechanism
The endocannabinoid system in mental disorders: Evidence from human brain studies
Mental disorders have a high prevalence compared with many other health conditions and are the leading cause of disability worldwide. Several studies performed in the last years support the involvement of the endocannabinoid system in the etiopathogenesis of different mental disorders. The present review will summarize the latest information on the role of the endocannabinoid system in psychiatric disorders, specifically depression, anxiety, and schizophrenia. We will focus on the findings from human brain studies regarding alterations in endocannabinoid levels, cannabinoid receptors and endocannabinoid metabolizing enzymes in patients suffering mental disorders.
Studies carried out in humans have consistently demonstrated that the endocannabinoid system is fundamental for emotional homeostasis and cognitive function. Thus, deregulation of the different elements that are part of the endocannabinoid system may contribute to the pathophysiology of several mental disorders. However, the results reported are controversial. In this sense, different alterations in gene and/or protein expression of CBI receptors have been shown depending on the technical approach used or the brain region studied. Despite the current discrepancies regarding cannabinoid receptors changes in depression and schizophrenia, present findings point to the endocannabinoid system as a pivotal neuromodulatory pathway relevant in the pathophysiology of mental disorders.This study was supported by the Spanish Ministry of Economy and Competitiveness (SAF2015-67457-R, MINECO/FEDER), the Plan Estatal de I+D+i 2013-2016, the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy, FEDER (PI13/01529) and the Basque Government (IT616/13). I I-L is a recipient of a Predoctoral Fellowship from the Basque Government. E F-Z is a recipient of a Predoctoral Fellowship from the University of Cantabria. CM is a recipient of a Postdoctoral Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2016, ID 747487)
Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration
A Ferrés-Coy et al.Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, similar to 80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive -like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant -like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.This work was supported by grants from CDTI—Spanish Ministry of Science and Innovation—DENDRIA contribution, 'nLife all rights reserved' (to AB and FA); Instituto de Salud Carlos III PI10/00290 and PI13/01390 (to AB), PI/10/0123 (to JCL) and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); NARSAD Independent Investigator Grant from the Brain & Behavior Research Foundation Grant 20003 (to AB); Ministry of Economy and Competitiveness SAF2012-35183 (to FA) and SAF2011-25020 (to AP); and Generalitat de Catalunya, Secretaria d’Universitat i Recerca del Departament d’Economia i Coneixement (SGR2014) Catalan Government Grant 2009SGR220 (to FA). Some of these grants are co-financed by the European Regional Development Fund 'A way to build Europe'. AF-C is a recipient of a fellowship from Spanish Ministry of Education, Culture and Sport.Peer Reviewe
RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis
Current antidepressants, which inhibit the serotonin transporter (SERT), display limited efficacy and slow onset of action. Here, we show that partial reduction of SERT expression by small interference RNA (SERT-siRNA) decreased immobility in the tail suspension test, displaying an antidepressant potential. Moreover, short-term SERT-siRNA treatment modified mouse brain variables considered to be key markers of antidepressant action: reduced expression and function of 5-HT(1A)-autoreceptors, elevated extracellular serotonin in forebrain and increased neurogenesis and expression of plasticity-related genes (BDNF, VEGF, Arc) in hippocampus. Remarkably, these effects occurred much earlier and were of greater magnitude than those evoked by long-term fluoxetine treatment. These findings highlight the critical role of SERT in serotonergic function and show that the reduction of SERT expression regulates serotonergic neurotransmission more potently than pharmacological blockade of SERT. The use of siRNA-targeting genes in serotonin neurons (SERT, 5-HT(1A)-autoreceptor) may be a novel therapeutic strategy to develop fast-acting antidepressants
Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication
It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways-cAMP, Wnt/ β -catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies
Enhanced Stress Response in 5-HT1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation
Postsynaptic 5-HT1A receptors (5-HT1AR) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT1ARs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT1ARs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT1AR overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/ glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT1AR activation might predispose to a high anxious phenotype and an impaired stress coping behavior.Funding sources: This research was supported by Spanish Ministry of Economy and Competitiveness (SAF2011-25020 and SAF2015-67457-R), Instituto de Salud Carlos III (FIS Grant PI13-00038) co-funded by the European Regional Development Fund (‘A way to buildEurope’) and Centro de Investigacion Biomedica en Red de Salud Mental(CIBERSAM)
- …