42 research outputs found

    Interaction of drugs of abuse and microRNA with HIV: a brief review.

    Get PDF
    MicroRNAs (miRNAs), the post-transcriptional regulators of gene expression, play key roles in modulating many cellular processes. The changes in the expression profiles of several specific miRNAs affect the interactions between miRNA and their targets in various illnesses, including addiction, HIV, cancer etc. The presence of anti-HIV-1 microRNAs (which regulate the level of infectivity of HIV-1) have been validated in the cells which are the primary targets of HIV infection. Drugs of abuse impair the intracellular innate anti-HIV mechanism(s) in monocytes, contributing to cell susceptibility to HIV infection. Emerging evidence has implicated miRNAs are differentially expressed in response to chronic morphine treatment. Activation of mu opioid receptors (MOR) by morphine is shown to down regulate the expression of anti-HIV miRNAs. In this review, we summarize the results which demonstrate that several drugs of abuse related miRNAs have roles in the mechanisms that define addiction, and how they interact with HIV

    Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection

    Get PDF
    Interplay between lncRNAs and mRNAs is rapidly emerging as a key epigenetic mechanism in controlling various cell functions. HIV can actively infect and/or can persist latently for years by manipulating host epigenetics; however, its molecular essence remains undiscovered in entirety. Here for the first time, we delineate the influence of HIV on global lncRNAs expression in monocytic cells lines. Our analysis revealed the expression modulation of nearly 1060 such lncRNAs which are associated with differentially expressed mRNAs in active and latent infection. This suggests a greater role of lncRNAs in regulating transcriptional and post-transcriptional gene expression during HIV infection. The differentially expressed mRNAs were involved in several different biological pathways where immunological networks were most enriched. Importantly, we discovered that HIV induces expression reversal of more than 150 lncRNAs between its active and latent infection. Also, hundreds of unique lncRNAs were identified in both infection conditions. The pathology specific ?gene-expression reversal? and ?on-and-off? switching of lncRNAs and associated mRNAs may lead to establish the relationship between active and HIV infection

    Immune Activation Is Associated With Increased Gut Microbial Translocation in Treatment-Naive, HIV-Infected Children in a Resource-Limited Setting

    Get PDF
    BACKGROUND: Gut damage resulting in microbial translocation (MT) is considered a major cause of immune activation (IA) in HIV infection, but data in children are limited, particularly in the absence of antiretroviral therapy. METHODS: Sixty perinatally HIV-infected, antiretroviral therapy–naive children, aged 2–12 years, were evaluated for plasma levels of lipopolysaccharide, DNA sequences encoding bacterial ribosomal 16 second (16S) RNA (16S rDNA) and soluble CD14 concurrently with markers of CD4 and CD8 T-cell IA and immune exhaustion (IE), CD4 counts, and plasma viral load. At study entry, participants were classified into immune categories (ICs): IC1 (CD4% > 25), IC2 (CD4% 15–25), and IC3 (CD4% < 15). Age-matched HIV-uninfected children served as controls. Data were evaluated at study entry and at 12 months. RESULTS: Levels of MT, IA, and IE were increased in patients as compared with controls, were highest in patients in IC3 group, and did not change over 12 months. MT products lipopolysaccharide and 16S rDNA correlated with each other and each correlated with plasma viral load, soluble CD14, and T-cell IA and IE. There was a correlation of IA with IE. CD4 counts and percentage were inversely correlated with MT products and underlying CD4 activation. CONCLUSIONS: In a natural history cohort of HIV-infected children not on therapy, MT was more pronounced in the most severely immunocompromised patients and was associated with IA. Strategies to reduce MT may help to reduce IA and prevent CD4 depletion

    Defective dendritic cell response to toll-like receptor 7/8 agonists in perinatally HIV-infected children

    Get PDF
    Understanding the defects in innate immunity associated with perinatal HIV infection is a prerequisite for effective antiretroviral treatment. We therefore compared the innate immune response [dendritic cell (DC) phenotype and function] in peripheral blood by flow cytometry at baseline and 12 months in HIV-infected children to determine the defect associated with perinatal HIV infection. As compared with controls, patients had decreased numbers of total DCs including plasmacytoid (p)DCs and myeloid (m)DCs and impaired function based on induction of maturation markers (CD83, CD80, CCR7) and cytokines tumor necrosis factor-α and interferon-&#945; (exclusive to pDC) upon stimulation with the TLR7/8 agonist Resiquimod. These abnormalities were evident in all three CD4 immune categories and persisted over 12 months; pDC function worsened in HIV+ children without treatment and improved slightly in those on highly active antiretroviral therapy (HAART). In conclusion, a majority of perinatally HIV-infected older children without HAART remain clinically stable in the short term, but have demonstrable immunologic abnormalities indicative of defects in the innate immune system. Children initiated on HAART showed improvement in CD4 counts but did not show improvement in DC function over the short term

    Interactive Effects of Morphine on HIV Infection: Role in HIV-Associated Neurocognitive Disorder

    Get PDF
    HIV epidemic continues to be a severe public health problem and concern within USA and across the globe with about 33 million people infected with HIV. The frequency of drug abuse among HIV infected patients is rapidly increasing and is another major issue since injection drug users are at a greater risk of developing HIV associated neurocognitive dysfunctions compared to non-drug users infected with HIV. Brain is a major target for many of the recreational drugs and HIV. Evidences suggest that opiate drug abuse is a risk factor in HIV infection, neural dysfunction and progression to AIDS. The information available on the role of morphine as a cofactor in the neuropathogenesis of HIV is scanty. This review summarizes the results that help in understanding the role of morphine use in HIV infection and neural dysfunction. Studies show that morphine enhances HIV-1 infection by suppressing IL-8, downregulating chemokines with reciprocal upregulation of HIV coreceptors. Morphine also activates MAPK signaling and downregulates cAMP response element-binding protein (CREB). Better understanding on the role of morphine in HIV infection and mechanisms through which morphine mediates its effects may help in devising novel therapeutic strategies against HIV-1 infection in opiate using HIV-infected population

    Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection

    Get PDF
    Although the introduction of antiretroviral therapy has reduced the prevalence of severe forms of neurocognitive disorders, human immunodeficiency virus (HIV)-1-associated neurocognitive disorders were observed in 50% of HIV-infected patients globally. The blood–brain barrier is known to be impermeable to most of antiretroviral drugs. Successful delivery of antiretroviral drugs into the brain may induce an inflammatory response, which may further induce neurotoxicity. Therefore, alternate options to antiretroviral drugs for decreasing the HIV infection and neurotoxicity may help in reducing neurocognitive impairments observed in HIV-infected patients. In this study, we explored the role of magnetic nanoparticle (MNP)-bound tissue inhibitor of metalloproteinase-1 (TIMP1) protein in reducing HIV infection levels, oxidative stress, and recovering spine density in HIV-infected SK-N-MC neuroblastoma cells. We did not observe any neuronal cytotoxicity with either the free TIMP1 or MNP-bound TIMP1 used in our study. We observed significantly reduced HIV infection in both solution phase and in MNP-bound TIMP1-exposed neuronal cells. Furthermore, we also observed significantly reduced reactive oxygen species production in both the test groups compared to the neuronal cells infected with HIV alone. To observe the effect of both soluble-phase TIMP1 and MNP-bound TIMP1 on spine density in HIV-infected neuronal cells, confocal microscopy was used. We observed significant recovery of spine density in both the test groups when compared to the cells infected with HIV alone, indicting the neuroprotective effect of TIMP1. Therefore, our results suggest that the MNP-bound TIMP1 delivery method across the blood–brain barrier can be used for reducing HIV infectivity in brain tissue and neuronal toxicity in HIV-infected patients

    Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a

    Get PDF
    Background Although highly active antiretroviral therapy (HAART) has significantly reduced the morbidity and mortality in HIV patients, virus continues to reside in the central nervous system (CNS) reservoir. Hence, a complete eradication of virus remains a challenge. HIV productively infects microglia/macrophages, but astrocytes are generally restricted to HIV infection. The relative importance of the possible replication blocks in astrocytes, however, is yet to be delineated. A recently identified restriction factor, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), restricts HIV infection in resting CD4+T cells and in monocyte-derived dendritic cells. However, SAMHD1 expression and HIV-1 restriction activity regulation in the CNS cells are unknown. Though, certain miRNAs have been implicated in HIV restriction in resting CD4+T cells, their role in the CNS HIV restriction and their mode of action are not established. We hypothesized that varying SAMHD1 expression would lead to restricted HIV infection and host miRNAs would regulate SAMHD1 expression in astrocytes. Results We found increased SAMHD1 expression and decreased miRNA expression (miR-181a and miR-155) in the astrocytes compared to microglia. We report for the first time that miR-155 and miR-181a regulated the SAMHD1 expression. Overexpression of these cellular miRNAs increased viral replication in the astrocytes, through SAMHD1 modulation. Reactivation of HIV replication was accompanied by decrease in SAMHD1 expression. Conclusions Here, we provide a proof of concept that increased SAMHD1 in human astrocytes is in part responsible for the HIV restriction, silencing of which relieves this restriction. At this time, this concept is of theoretical nature. Further experiments are needed to confirm if HIV replication can be reactivated in the CNS reservoir

    Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue

    Get PDF
    The human immunodeficiency virus 1 (HIV-1) still remains one of the leading life-threatening diseases in the world. The introduction of highly active antiretroviral therapy has significantly reduced disease morbidity and mortality. However, most of the drugs have variable penetrance into viral reservoir sites, including gut-associated lymphoid tissue (GALT). Being the largest lymphoid organ, GALT plays a key role in early HIV infection and host–pathogen interaction. Many different treatment options have been proposed to eradicate the virus from GALT. However, it becomes difficult to deliver traditional drugs to the GALT because of its complex physiology. In this regard, we developed a polymer-based Pluronic nanocarrier containing anti-HIV drug called efavirenz (EFV) targeting Microfold cells (M-cells) in the GALT. M-cells are specialized epithelial cells that are predominantly present in the GALT. In this work, we have exploited this paracellular transport property of M-cells for targeted delivery of Pluronic nanocarrier tagged EFV, bioconjugated with anti-M-cell-specific antibodies to the GALT (nanodrug). Preliminary characterization showed that the nanodrug (EFV-F12-COOH) is of 140 nm size with 0.3 polydispersion index, and the zeta potential of the particles was −19.38±2.2 mV. Further, drug dissolution study has shown a significantly improved sustained release over free drugs. Binding potential of nanodrug with M-cell was also confirmed with fluorescence microscopy and in vitro uptake and release studies. The anti-HIV activity of the nanodrug was also significantly higher compared to that of free drug. This novel formulation was able to show sustained release of EFV and inhibit the HIV-1 infection in the GALT compared to the free drug. The present study has potential for our in vivo targeted nanodrug delivery system by combining traditional enteric-coated capsule technique via oral administration

    Effect of Cocaine on HIV Infection and Inflammasome Gene Expression Profile in HIV Infected Macrophages

    Get PDF
    We have observed significantly increased HIV infection in HIV infected macrophages in the presence of cocaine that could be due to the downregulation of BST2 restriction factor in these cells. In human inflammasome PCR array, among different involved in inflammasome formation, in HIV infected macrophages in the presence of cocaine, we have observed significant upregulation of NLRP3, AIM2 genes and downstream genes IL-1? and PTGS2. Whereas negative regulatory gene MEFV was upregulated, CD40LG and PYDC1 were significantly downregulated. Among various NOD like receptors, NOD2 was significantly upregulated in both HIV alone and HIV plus cocaine treated cells. In the downstream genes, chemokine (C-C motif) ligand 2 (CCL2), CCL7 and IL-6 were significantly up regulated in HIV plus cocaine treated macrophages. We have also observed significant ROS production (in HIV and/or cocaine treated cells) which is one of the indirect-activators of inflammasomes formation. Further, we have observed early apoptosis in HIV alone and HIV plus cocaine treated macrophages which may be resultant of inflammasome formation and cspase-1 activation. These results indicate that in case of HIV infected macrophages exposed to cocaine, increased ROS production and IL-1? transcription serve as an activators for the formation of NLRP3 and AIM2 mediated inflammasomes that leads to caspase 1 mediated apoptosis

    Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain

    Get PDF
    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808?nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension
    corecore