4 research outputs found

    Validity of quasi-degenerate neutrino mass models and their predictions on baryogenesis

    Full text link
    Quasi-degenerate neutrino mass models (QDN) which can explain the current data on neutrino masses and mixings,are studied. In the first part, we study the effect of CP-phases on QDN mass matrix obeying μτ\mu-\tau symmetry in normal hierarchical (QD-NH) and inverted hierarchical (QD-IH) patterns.The numerical predictions are consistent with observed data on solar mixing angle, absolute neutrino mass parameter consistent with neutrinoless double beta decay mass parameter and sum of three absolute neutrino masses from cosmological bound.The neutrino mass matrix is parameterized using only two unknown parameters. The second part deals with the estimation of observed baryon asymmetry of the universe. The prediction is nearly consistent with observation with flavoured thermal leptogenesis scenario. QD-NH model appears to be more favourable than those of QD-IH models.The present analysis shows that the three absolute neutrino masses may exhibit quasi-degenerate pattern in nature. They are far from discrimination at the moment.Comment: 17 pages, no figure, poster presentation in the 25th International Conference on neutrino physics and Astrophysics, Kyoto, Japan, July,201

    Perturbative and Nonperturbative Contributions to a Simple Model for Baryogenesis

    Get PDF
    Single field baryogenesis, a scenario for Dirac leptogenesis sourced by a time-dependent scalar condensate, is studied. We compare the creation of the charge asymmetry by the perturbative decay of the condensate with the nonperturbative decay, a process of particle production commonly known in the context of inflation as preheating. The nonperturbative channel dominates when the coupling of the scalar field to leptons is sufficiently large.Comment: 11 pages, 3 figure

    Leptogenesis and low energy observables in left-right symmetric models

    Get PDF
    In the context of left-right symmetric models we study the connection of leptogenesis and low energy parameters such as neutrinoless double beta decay and leptonic CP violation. Upon imposition of a unitarity constraint, the neutrino parameters are significantly restricted and the Majorana phases are determined within a narrow range, depending on the kind of solar solution. One of the Majorana phases gets determined to a good accuracy and thereby the second phase can be probed from the results of neutrinoless double beta decay experiments. We examine the contributions of the solar and atmospheric mass squared differences to the asymmetry and find that in general the solar scale dominates. In order to let the atmospheric scale dominate, some finetuning between one of the Majorana phases and the Dirac CP phase is required. In this case, one of the Majorana phases is determined by the amount of CP violation in oscillation experiments.Comment: 18 pages, 6 figures. Matches version to appear in PR

    One-loop QCD mass effects in the production of polarized bottom and top quarks

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:8053.4153(RAL--93-081) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore