202 research outputs found

    Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom

    Full text link
    The emission spectra of individual self-assembled quantum dots containing a single magnetic Mn atom differ strongly from dot to dot. The differences are explained by the influence of the system geometry, specifically the in-plane asymmetry of the quantum dot and the position of the Mn atom. Depending on both these parameters, one has different characteristic emission features which either reveal or hide the spin state of the magnetic atom. The observed behavior in both zero field and under magnetic field can be explained quantitatively by the interplay between the exciton-manganese exchange interaction (dependent on the Mn position) and the anisotropic part of the electron-hole exchange interaction (related to the asymmetry of the quantum dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Electron spin relaxation in carbon nanotubes

    Full text link
    The long standing problem of inexplicably short spin relaxation in carbon nanotubes (CNTs) is examined. The curvature-mediated spin-orbital interaction is shown to induce fluctuating electron spin precession causing efficient relaxation in a manner analogous to the Dyakonov-Perel mechanism. Our calculation estimates longitudinal (spin-flip) and transversal (decoherence) relaxation times as short as 150 ps and 110 ps at room temperature, respectively, along with a pronounced anisotropic dependence. Interference of electrons originating from different valleys can lead to even faster dephasing. The results can help clarify the measured data, resolving discrepancies in the literature.Comment: 9 pages, 3 figure

    Shrinking limits of silicon MOSFET's: Numerical study of 10-nm-scale devices

    Full text link
    We have performed numerical modeling of dual-gate ballistic n-MOSFET's with channel length of the order of 10 nm, including the effects of quantum tunneling along the channel and through the gate oxide. Our analysis includes a self-consistent solution of the full (two-dimensional) electrostatic problem, with account of electric field penetration into the heavily-doped electrodes. The results show that transistors with channel length as small as 8 nm can exhibit either a transconductance up to 4,000 mS/mm or gate modulation of current by more than 8 orders of magnitude, depending on the gate oxide thickness. These characteristics make the devices satisfactory for logic and memory applications, respectively, though their gate threshold voltage is rather sensitive to nanometer-scale variations in the channel length.Comment: 8 pages, 10 figures. Submitted to Special Issue of Superlattices and Microstructures: Third NASA Workshop on Device Modeling, August 199

    Direct measurement of a pure spin current by a polarized light beam

    Full text link
    The photon helicity may be mapped to a spin-1/2, whereby we put forward an intrinsic interaction between a polarized light beam as a ``photon spin current'' and a pure spin current in a semiconductor, which arises from the spin-orbit coupling in valence bands as a pure relativity effect without involving the Rashba or the Dresselhaus effect due to inversion asymmetries. The interaction leads to circular optical birefringence, which is similar to the Faraday rotation in magneto-optics but nevertheless involve no net magnetization. The birefringence effect provide a direct, non-demolition measurement of pure spin currents.Comment: Erratum version to [Physical Review Letter 100, 086603 (2008)

    High-resolution Raman microscopy of curled carbon nanotubes

    Get PDF
    The use of confocal Raman imaging spectroscopy and atomic force microscopy for identifying conditions of carbon nanotubes with bent nanotube bundles in the bent state was described. It was found that the tangential G mode on Raman spectra systemically shifts downward upon nanotube bending. The frequency shifts observed in the nanotubes were due to tensile strain of the bending nanotube arrays, which resulted in the loosening of C-C bonds in the outer walls. It was speculated that the frequency shift in Raman spectra was used for fast monitoring of the bending state of the standing carbon nanotube in gas and fluid flow nanosensors.open282

    Optical effects of spin currents in semiconductors

    Full text link
    A spin current has novel linear and second-order nonlinear optical effects due to its symmetry properties. With the symmetry analysis and the eight-band microscopic calculation we have systematically investigated the interaction between a spin current and a polarized light beam (or the "photon spin current") in direct-gap semiconductors. This interaction is rooted in the intrinsic spin-orbit coupling in valence bands and does not rely on the Rashba or Dresselhaus effect. The light-spin current interaction results in an optical birefringence effect of the spin current. The symmetry analysis indicates that in a semiconductor with inversion symmetry, the linear birefringence effect vanishes and only the circular birefringence effect exists. The circular birefringence effect is similar to the Faraday rotation in magneto-optics but involves no net magnetization nor breaking the time-reversal symmetry. Moreover, a spin current can induce the second-order nonlinear optical processes due to the inversion-symmetry breaking. These findings form a basis of measuring a pure spin current where and when it flows with the standard optical spectroscopy, which may provide a toolbox to explore a wealth of physics connecting the spintronics and photonics.Comment: 16 pages, 7 fig

    Spin polarization decay in spin-1/2 and spin-3/2 systems

    Full text link
    We present a general unifying theory for spin polarization decay due to the interplay of spin precession and momentum scattering that is applicable to both spin-1/2 electrons and spin-3/2 holes. Our theory allows us to identify and characterize a wide range of qualitatively different regimes. For strong momentum scattering or slow spin precession we recover the D'yakonov-Perel result, according to which the spin relaxation time is inversely proportional to the momentum relaxation time. On the other hand, we find that, in the ballistic regime the carrier spin polarization shows a very different qualitative behavior. In systems with isotropic spin splitting the spin polarization can oscillate indefinitely, while in systems with anisotropic spin splitting the spin polarization is reduced by spin dephasing, which is non-exponential and may result in an incomplete decay of the spin polarization. For weak momentum scattering or fast spin precession, the oscillations or non-exponential spin dephasing are modulated by an exponential envelope proportional to the momentum relaxation time. Nevertheless, even in this case in certain systems a fraction of the spin polarization may survive at long times. Finally it is shown that, despite the qualitatively different nature of spin precession in the valence band, spin polarization decay in spin-3/2 hole systems has many similarities to its counterpart in spin-1/2 electron systems.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Statistics of the Charging Spectrum of a Two-Dimensional Coulomb Glass Island

    Full text link
    The fluctuations of capacitance of a two-dimensional island are studied in the regime of low electron concentration and strong disorder, when electrons can be considered classical particles. The universal capacitance distribution is found, with the dispersion being of the order of the average. This distribution is shown to be closely related to the shape of the Coulomb gap in the one-electron density of states of the island. Behavior of the the capacitance fluctuations near the metal - insulator transition is discussed.Comment: 4 pages, LaTex, 4 Postscript figures are included Discussion of the situation with screening by metallic gate is adde

    Spin-orbit interaction from low-symmetry localized defects in semiconductors

    Full text link
    The presence of low-symmetry impurities or defect complexes in the zinc-blende direct-gap semiconductors (e.g. interstitials, DX-centers) results in a novel spin-orbit term in the effective Hamiltonian for the conduction band. The new extrinsic spin-orbit interaction is proportional to the matrix element of the defect potential between the conduction and the valence bands. Because this interaction arises already in the first order of the expansion of the effective Hamiltonian in powers of Uext/Eg << 1 (where Uext is the pseudopotential of an interstitial atom, and Eg is the band gap), its contribution to the spin relaxation rate may exceed that of the previously studied extrinsic contributions, even for moderate concentrations of impurities.Comment: extended version, 5+ page

    Two-electron state in a disordered 2D island: pairing caused by the Coulomb repulsion

    Full text link
    We show the existence of bound two-electron states in an almost depleted two-dimensional island. These two-electron states are carried by special compact configurations of four single-electron levels. The existence of these states does not require phonon mediation, and is facilitated by the disorder-induced potential relief and by the electron-electron repulsion only. The density of two-electron states is estimated and their evolution with the magnetic field is discussed.Comment: 9 pages, 1 fi
    • 

    corecore