25 research outputs found
Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters
Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%
Synchronization and Timing in CMS HCAL
The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance
Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4
The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile
Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges
Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%
Design, Performance and Calibration of the CMS Forward Calorimeter Wedges
We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter
The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS
A concept of adaptive control system for rail grinding
Rail grinding with the use of rail grinding trains under railway track conditions provides an increase in the rail lifecycle. A main task of rail grinding is to form a rail transverse profile to reduce the contact loading and wear from rolling stock wheels. At present, providing the accuracy of forming a rail repair profile remains a challenge, which overcoming is hampered by the technological features of rail grinding trains. To solve this problem, the paper proposes a concept of adaptive control system for rail grinding process. This system is intended to work as a part of rail grinding train and provide inspection of the results of operations on rail machining and, if required, adjusting grinding modes. The main objectives of this system are: providing accuracy and quality of rail machining by grinding, optimisation of time consumption within a track possession for rail grinding and developing a database to enhance planning of the rail grinding works. Siberian Transport University and JSC “Remputmash” Kaluga Plant are now implementing the introduced concept of adaptive control for grinding in a collaborative project for the development of a new RGT 2.0 rail grinding train
Theoretical Investigation on Performance Characteristics of Aerostatic Journal Bearings with Active Displacement Compensator
Active aerostatic bearings are capable of providing negative compliance, which can be successfully used to automatically compensate for deformation of the machine tool system in order to reduce the time and improve the quality of metalworking. The article considers an aerostatic radial bearing with external combined throttling systems and an elastic displacement compensator, which is an alternative to aerostatic bearings with air flow rate compensators. The results of the mathematical modeling and theoretical research of stationary and nonstationary modes of operation of bearings with slotted and diaphragm throttling systems are presented. A counter-matrix sweep method has been developed for solving linear and nonlinear boundary value problems in partial derivatives with respect to the function of the square of the pressure in the bearing gap and inter-throttling bearing cavities for any values of the relative shaft eccentricity. A numerical method is proposed for calculating the dynamic quality criteria, and the transfer function of the dynamic compliance of a bearing with small displacements is considered as a linear automatic control system with distributed parameters. An experimental verification of the theoretical characteristics of the bearing was carried out, which showed a satisfactory correspondence among the compared data. It is shown that bearings with a throttle system have the best quantitative and qualitative load characteristics. The possibility of optimal determination of the values of a number of important parameters that provide the bearing with optimal performance and a high stability margin is established. It is shown that bearings with an elastic suspension of the movable sleeve allow one to compensate for significant movements, which can be larger than the size of the air gap by an order of magnitude or more. In these conditions, similar bearings with air flow compensators would be obviously inoperative
Mathematical Modeling on Statics and Dynamics of Aerostatic Thrust Bearing with External Combined Throttling and Elastic Orifice Fluid Flow Regulation
As aerostatic bearings are used in high-speed metal-cutting machines to increase machining accuracy, there is the need to improve their characteristics, including compliance, which is usually high. In practical applications, a significant reduction of bearing compliance is often necessary, sometimes down to zero and even negative values, to ensure automatic compensation of the elastic deformation in the machine technological system. A decrease in compliance leads to deterioration in the dynamic performance of the bearing, so it is necessary to develop new designs that meet the above requirements. This article considers an aerostatic bearing, in which decrease in compliance is ensured by the use of air throttling with elastic orifices. To ensure its stability, the principle of combined external throttling was applied, which can substantially improve the dynamics of conventional aerostatic bearings. A mathematical model of the elastic orifice deformation was developed, together with the flow rate performance calculation method. The method ensured full qualitative and satisfactory quantitative agreement with the experimental data. The model was used in the mathematical modeling of the aerostatic bearing movement. The article also proposes a method to calculate the static load capacity and compliance of a bearing, as well as a numerical method for fast computation of its dynamic performance, which allows for real-time multi-parameter optimization by the bearing dynamic performance criteria. The study showed that there is an optimal set of design parameters for which low, zero, and negative static compliance of the bearing is ensured, with the necessary stability margin, high speed, and the non-oscillatory nature of the transient processes
Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation
Space radiation, presented primarily by high-charge and -energy particles (HZEs), has a substantial impact on the central nervous system (CNS) of astronauts. This impact, surprisingly, has not only negative but also positive effects on CNS functions. Despite the fact that the mechanisms of this effect have not yet been elucidated, several studies indicate a key role for monoaminergic networks underlying these effects. Here, we investigated the effects of acute irradiation with 450 MeV/n carbon (12C) nuclei at a dose of 0.14 Gy on Wistar rats; a state of anxiety was accessed using a light–dark box, spatial memory in a Morris water maze, and the dynamics of monoamine metabolism in several brain morphological structures using HPLC. No behavioral changes were observed. Irradiation led to the immediate suppression of dopamine turnover in the prefrontal cortex, hypothalamus, and striatum, while a decrease in the level of norepinephrine was detected in the amygdala. However, these effects were transient. The deferred effect of dopamine turnover increase was found in the hippocampus. These data underscore the ability of even low-dose 12C irradiation to affect monoaminergic networks. However, this impact is transient and is not accompanied by behavioral alterations