67 research outputs found
Role of cAMP Signaling in the Survival and Infectivity of the Protozoan Parasite, Leishmania donovani
Leishmania donovani, while invading macrophages, encounters striking shift in temperature and pH (from 22°C and pH 7.2 to 37°C and pH 5.5), which act as the key environmental trigger for differentiation, and increases cAMP level and cAMP-mediated responses. For comprehensive understanding of cAMP signaling, we studied the enzymes related to cAMP metabolism. A stage-specific and developmentally regulated isoform of receptor adenylate cyclase (LdRACA) showed to regulate differentiation-coupled induction of cAMP. The soluble acidocalcisomal pyrophosphatase, Ldvsp1, was the major isoform regulating cAMP level in association with LdRACA. A differentially expressed soluble cytosolic cAMP phosphodiesterase (LdPDEA) might be related to infection establishment by shifting trypanothione pool utilization bias toward antioxidant defense. We identified and cloned a functional cAMP-binding effector molecule from L. donovani (a regulatory subunit of cAMP-dependent protein kinase, LdPKAR) that may modulate metacyclogenesis through induction of autophagy. This study reveals the significance of cAMP signaling in parasite survival and infectivity
18β-glycyrrhetinic acid triggers curative Th1 response and nitric oxide up-regulation in experimental visceral leishmaniasis associated with the activation of NF-κB
The efficacy of 18β-glycyrrhetinic acid (GRA), a pentacyclic triterpene belonging to the β-amyrin series of plant origin, was evaluated in experimental visceral leishmaniasis. GRA is reported to have antitumor and immunoregulatory activities, which may be attributable in part to the induction of NO. Indeed, an 11-fold increase in NO production was observed with 20 µM GRA in mouse peritoneal macrophages infected with Leishmania donovani promastigotes. In addition to having appreciable inhibitory effects on amastigote multiplication within macrophages (IC50, 4.6 µg/ml), complete elimination of liver and spleen parasite burden was achieved by GRA at a dose of 50 mg/kg/day, given three times, 5 days apart, in a 45-day mouse model of visceral leishmaniasis. GRA treatment resulted in reduced levels of IL-10 and IL-4, but increased levels of IL-12, IFN-γ, TNF-α, and inducible NO synthase, reflecting a switch of CD4+ differentiation from Th2 to Th1. This treatment is likely to activate immunity, thereby imparting resistance to reinfection. GRA induced NF-κB migration into the nucleus of parasite-infected cells and caused a diminishing presence of IκB in the cytoplasm. The lower level of cytoplasmic IκBα in GRA-treated cells resulted from increased phosphorylation of IκBα and higher activity of IκB kinase (IKK). Additional experiments demonstrated that GRA does not directly affect IKK activity. These results suggest that GRA exerts its effects at some level upstream of IKK in the signaling pathway and induces the production of proinflammatory mediators through a mechanism that, at least in part, involves induction of NF-κB activation
Bioactive Component of Licorice as an Antileishmanial Agent
The term leishmaniasis encompasses a spectrum of vector-borne protozoan parasitic diseases ranging from self-healing cutaneous to fatal visceral leishmaniasis. The disease affects 12 million people worldwide with 0.5 million new cases per annum. Present antileishmanial chemotherapeutic drugs project limitations because of severe toxicity, lengthy regime and occurrence of resistance, thereby making development of newer, gentler and efficacious therapeutics an urgent need for treatment of leishmaniasis. Application of medicinal plants in treatment of refractory diseases is valued for its clinical efficacy and nontoxicity. The biologically active components derived from them continue to play important roles as chemopreventive agents. Licorice has been known for its medicinal property from ancient times for treatment of various ailments. 18β-Glycyrrhetinic acid, glycyrrhizic acid and licochalcone A are the most extensively studied constituents of licorice in terms of antileishmanial agent. Overall, this chapter is dedicated to highlight the current understanding of the mechanism of these bioactive constituents of licorice, which potentiates them as antileishmanial agents. Furthermore, it also brings to light the importance of folk medicine in curing diseases and thereby gives impetus to explore ancient medicines and thier mode of actions to use them progressively to cure diseases
Role of cAMP Homeostasis in Intra-Macrophage Survival and Infectivity of Unicellular Parasites like <em>Leishmania</em>
Unicellular eukaryotic pathogen Leishmania donovani, an intra-macrophage protozoan parasite, on exposure to phagolysosome conditions (PC) of mammalian macrophages, show increased cAMP level and cAMP-dependent protein kinase A (PKA) resulting in resistance to macrophage oxidative burst. In order to have a comprehensive understanding of cAMP signaling and their contribution to infectivity, studies were carried out on all the enzymes associated with cAMP metabolism such as adenylate cyclase, phosphodiesterase, pyrophosphatase and the regulatory and catalytic subunits of PKA. This chapter deals in detail the contribution of these components of cAMP signaling in cAMP homeostasis of the parasite as well as their role on successful host-parasite interaction leading to intracellular parasite survival and establishment of infection. Finally, a discussion is made about how these observations might be exploited for developing drug candidates targeting parasite specific features
Cystatin cures visceral leishmaniasis by NF-κB mediated proinflammatory response through co-ordination of TLR/MyD88 signaling with p105-Tpl2-ERK pathway
Cystatin could completely cure experimental visceral leishmaniasis by switching the differentiation of Th2 cells to Th1 type, as well as upregulating NO, and activation of NF-κB played a major role in these processes. Analysis of upstream signaling events revealed that TLR 2/4-mediated MyD88-dependent participation of IL-1R-activated kinase (IRAK)1, TNF receptor-associated factor (TRAF)6 and TGFβ-activated kinase (TAK)1 is essential to induce cystatin-mediated IκB kinase (IKK)/NF-κB activation in macrophages. Cystatin plus IFN-γ activated the IKK complex to induce phosphorylation-mediated degradation of p105, the physiological partner and inhibitor of the MEK kinase, tumor progression locus 2 (Tpl-2). Consequently, Tpl-2 was liberated from p105, thereby stimulating activation of the MEK/ERK MAPK cascade. Cystatin plus IFN-γ-induced IKK-β post-transcriptionally modified p65/RelA subunit of NF-κB by dual phosphorylation in infected phagocytic cells. IKK induced the phosphorylation of p65 directly on Ser-536 residue whereas phosphorylation on Ser 276 residue was by sequential activation of Tpl-2/MEK/ERK/MSK1. Collectively, the present study indicates that cystatin plus IFN-γ-induced MyD88 signaling may bifurcate at the level of IKK, leading to a divergent pathway regulating NF-κB activation by IκBα phosphorylation and by p65 transactivation through Tpl-2/MEK/ERK/MSK1
Role of 67 kDa cell surface laminin binding protein of Leishmania donovani in pathogenesis
The role that interaction with laminin may play in Leishmania donovani infection was investigated. Binding of 125 I-radiolabeled laminin, in a liquid-phase assay, by the parasite was rapid, saturable, specific, reversible, and of high affinity. Using a Western blotting procedure, a 67 kDa laminin-binding protein (LBP) was identified from the membrane of both the promastigote and amastigote forms of L. donovani. Subsequently, the protein was purified by affinity chromatography. Immunofluorescence with a polyclonal anti-body against LBP as well as flow cytometric analysis demonstrated its presence at the parasite surface. After stimulation with phorbol-12-myristate-13-acetate (PMA), U937 cells exhibited the ability to adhere to laminin and LBP specifically inhibited this adhesion. The reduced parasite adhesion after tunicamycin treatment suggested the importance of sugar residues in cell adhesion. Although co-administration of either laminin or LBP or anti LBP antibody reduced parasite virulence, resulting in a lower level of infection in the BALB/c mouse model, an in vitro macrophage culture-enhanced level of infection was observed in the case of laminin-coated parasites. The results collectively suggest a role for LBP in the interaction of the parasite with extracellular matrix elements, which may constitute a basis for the homing of the parasite to its physiological address
Studies on the turnover of glucocerebrosidase in cultured rat peritoneal macrophages and normal human fibroblasts
The kinetics of glucocerebrosidase synthesis and degradation in rat peritoneal macrophages and in human fibroblasts have been studied using conduritol B epoxide (CBE), an irreversible and specific inhibitor of mammalian glucocerebrosidase. In cultured fibroblasts, higher concentrations of CBE and/or longer times were required for inhibition of glucocerebrosidase than were necessary for inhibition of the macrophage enzyme. However, inhibition of activity in cell extracts from both cell types showed identical time and concentration dependence. After the removal of CBE from cultures, enzyme activity returned to normal with a half-time of 48 h for macrophages and 40 h for fibroblasts. The reappearance of enzyme activity was prevented by an inhibitor of protein synthesis. Both the rate of synthesis and degradation of glucocerebrosidase enzyme protein were independent of the presence of CBE. The calculated rate of degradation of glucocerebrosidase was confirmed using metabolically labelled enzyme in cell cultures. The rate of synthesis for macrophages is 1.8 ng enzyme h-1 mg cell protein-1 and the rate of degradation is 1.4% h-1 (0.014 h-1). These values were 2.0 ng h-1 mg-1 and 0.018 h-1 for fibroblasts
The Tale of Mastering Macrophage Environment through the Control of Inflammasome-Mediated Macrophage Activation and cAMP Homeostasis by the Protozoan Parasite <em>Leishmania</em>
Leishmania, being an intelligent protozoan parasite, modulates the defensive arsenals of the host to create a favorable niche for their survival. When the intracellular parasite is encountered by the host, multimeric complexes of inflammasomes get assembled and activated, thereby leading to genesis of inflammatory response. In order to subvert host defensive strategies, Leishmania utilizes their cyclic adenosine monophosphate (cAMP) and cAMP-induced response to neutralize macrophage oxidative damage. In this chapter, we summarize our current understanding of the mechanisms of inflammasome activation in macrophages and cAMP homeostasis of the parasite, leading to parasite viability within the macrophages and establishment of infection. Furthermore, we took into account, recent progresses in translating these research areas into therapeutic strategies, aimed at combating macrophage associated diseases
Isolation of a nitric oxide synthase from the protozoan parasite, Leishmania donovani
A soluble nitric oxide synthase (NOS) activity was purified 2800-fold from Leishmania donovani, the causative parasite of visceral leishmaniasis, by two-step affinity and anion-exchange chromatography. The purified enzyme ran as a prominent band of 110 kDa on SDS-PAGE whereas gel filtration experiments estimated the native molecular mass to be 230±20 kDa indicating that the native enzyme exists as a dimer. The enzyme activity required NADPH and was blocked by EGTA. The enzyme kinetics, cofactor requirements, inhibition studies and Western blot analysis with brain anti-NOS antibody suggest its similarity with mammalian NOS isoform I
Curative Effect of 18β-Glycyrrhetinic Acid in Experimental Visceral Leishmaniasis Depends on Phosphatase-Dependent Modulation of Cellular MAP Kinases
We earlier showed that 18β-glycyrrhetinic acid (GRA), a pentacyclic triterpenoid from licorice root, could completely cure visceral leishmaniasis in BALB/c mouse model. This was associated with induction of nitric oxide and proinflammatory cytokine production through the up regulation of NF-κB. In the present study we tried to decipher the underlying cellular mechanisms of the curative effect of GRA. Analysis of MAP kinase pathways revealed that GRA caused strong activation of p38 and to a lesser extent, ERK in bone marrow-derived macrophages (BMDM). Almost complete abrogation of GRA-induced cytokine production in presence of specific inhibitors of p38 and ERK1/2 confirmed the involvement of these MAP kinases in GRA-mediated responses. GRA induced mitogen- and stress-activated protein kinase (MSK1) activity in a time-dependent manner suggested that GRA-mediated NF-κB transactivation is mediated by p38, ERK and MSK1 pathway. As kinase/phosphatase balance plays an important role in modulating infection, the effect of GRA on MAPK directed phosphatases (MKP) was studied. GRA markedly reduced the expression and activities of three phosphatases, MKP1, MKP3 and protein phosphatase 2A (PP2A) along with a substantial reduction of p38 and ERK dephosphorylation in infected BMDM. Similarly in the in vivo situation, GRA treatment of L. donovani-infected BALB/c mice caused marked reduction of spleen parasite burden associated with concomitant decrease of individual phosphatase levels. However, activation of kinases also played an important role as the protective effect of GRA was significantly abrogated by pharmacological inhibition of p38 and ERK pathway. Curative effect of GRA may, therefore, be associated with restoration of proper cellular kinase/phosphatase balance, rather than modulation of either kinases or phosphatases
- …