461 research outputs found

    The value of hip and knee arthroplasty registries

    Get PDF
    Orthopaedics, Trauma Surgery and Rehabilitatio

    Repeatability of fractional flow reserve despite variations in systemic and coronary hemodynamics

    Get PDF
    Objectives This study classified and quantified the variation in fractional flow reserve (FFR) due to fluctuations in systemic and coronary hemodynamics during intravenous adenosine infusion. Background Although FFR has become a key invasive tool to guide treatment, questions remain regarding its repeatability and stability during intravenous adenosine infusion because of systemic effects that can alter driving pressure and heart rate. Methods We reanalyzed data from the VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice) study, which enrolled consecutive patients who were infused with intravenous adenosine at 140 ÎŒg/kg/min and measured FFR twice. Raw phasic pressure tracings from the aorta (Pa) and distal coronary artery (Pd) were transformed into moving averages of Pd/Pa. Visual analysis grouped Pd/Pa curves into patterns of similar response. Quantitative analysis of the Pd/Pa curves identified the “smart minimum” FFR using a novel algorithm, which was compared with human core laboratory analysis. Results A total of 190 complete pairs came from 206 patients after exclusions. Visual analysis revealed 3 Pd/Pa patterns: “classic” (sigmoid) in 57%, “humped” (sigmoid with superimposed bumps of varying height) in 39%, and “unusual” (no pattern) in 4%. The Pd/Pa pattern repeated itself in 67% of patient pairs. Despite variability of Pd/Pa during the hyperemic period, the “smart minimum” FFR demonstrated excellent repeatability (bias −0.001, SD 0.018, paired p = 0.93, r2 = 98.2%, coefficient of variation = 2.5%). Our algorithm produced FFR values not significantly different from human core laboratory analysis (paired p = 0.43 vs. VERIFY; p = 0.34 vs. RESOLVE). Conclusions Intravenous adenosine produced 3 general patterns of Pd/Pa response, with associated variability in aortic and coronary pressure and heart rate during the hyperemic period. Nevertheless, FFR – when chosen appropriately – proved to be a highly reproducible value. Therefore, operators can confidently select the “smart minimum” FFR for patient care. Our results suggest that this selection process can be automated, yet comparable to human core laboratory analysis

    Influence of orientation of bi-leaflet valve prostheses on coronary perfusion pressure in humans

    Get PDF
    Orientation of a bi-leaflet prosthesis (BLP) might influence coronary perfusion. The aim of this study was to investigate the influence of the orientation on coronary perfusion pressure during hyperemia and adrenergic stimulation. During hyperemia perfusion pressure determines coronary blood flow. Fourteen patients with normal coronary angiogram underwent aortic valve replacement (AVR) by a BLP, and seven received a bio-prosthesis. Patients receiving a BLP were randomized to either orientation A (hinge mechanism perpendicular to a line drawn between the coronary ostia) or B (hinge mechanism parallel to the line between the ostia). Six months after surgery all patients underwent cardiac catheterization. Pressures were measured during resting conditions, during maximum hyperemia, and during maximum adrenergic stimulation with a guiding catheter in the aortic arch (Pao), simultaneously with a sensor tipped guide wire in the coronary artery (Pcor) and in the aortic root (Proot). Pao-Proot described a flow-induced pressure drop in the aortic root (Venturi effect) and the gradient Proot-Pcor described coronary ostium abnormalities. Only small non-significant differences in myocardial perfusion pressure were found between different orientations of a bi-leaflet prosthesis or between bi-leaflet prostheses and bio-prostheses in Pao-Proot and Proot-Pcor

    Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment

    Get PDF
    Objectives: This study compared the diagnostic performance with adenosine-derived fractional flow reserve (FFR) ≀0.8 of contrast-based FFR (cFFR), resting distal pressure (Pd)/aortic pressure (Pa), and the instantaneous wave-free ratio (iFR). Background: FFR objectively identifies lesions that benefit from medical therapy versus revascularization. However, FFR requires maximal vasodilation, usually achieved with adenosine. Radiographic contrast injection causes submaximal coronary hyperemia. Therefore, intracoronary contrast could provide an easy and inexpensive tool for predicting FFR. Methods: We recruited patients undergoing routine FFR assessment and made paired, repeated measurements of all physiology metrics (Pd/Pa, iFR, cFFR, and FFR). Contrast medium and dose were per local practice, as was the dose of intracoronary adenosine. Operators were encouraged to perform both intracoronary and intravenous adenosine assessments and a final drift check to assess wire calibration. A central core lab analyzed blinded pressure tracings in a standardized fashion. Results: A total of 763 subjects were enrolled from 12 international centers. Contrast volume was 8 ± 2 ml per measurement, and 8 different contrast media were used. Repeated measurements of each metric showed a bias <0.005, but a lower SD (less variability) for cFFR than resting indexes. Although Pd/Pa and iFR demonstrated equivalent performance against FFR ≀0.8 (78.5% vs. 79.9% accuracy; p = 0.78; area under the receiver-operating characteristic curve: 0.875 vs. 0.881; p = 0.35), cFFR improved both metrics (85.8% accuracy and 0.930 area; p < 0.001 for each) with an optimal binary threshold of 0.83. A hybrid decision-making strategy using cFFR required adenosine less often than when based on either Pd/Pa or iFR. Conclusions: cFFR provides diagnostic performance superior to that of Pd/Pa or iFR for predicting FFR. For clinical scenarios or health care systems in which adenosine is contraindicated or prohibitively expensive, cFFR offers a universal technique to simplify invasive coronary physiological assessments. Yet FFR remains the reference standard for diagnostic certainty as even cFFR reached only ∌85% agreement

    The relationship between fractional flow reserve, platelet reactivity and platelet leukocyte complexes in stable coronary artery disease

    Get PDF
    Background: The presence of stenoses that significantly impair blood flow and cause myocardial ischemia negatively affects prognosis of patients with stable coronary artery disease. Altered platelet reactivity has been associated with impaired prognosis of stable coronary artery disease. Platelets are activated and form complexes with leukocytes in response to microshear gradients caused by friction forces on the arterial wall or flow separation. We hypothesized that the presence of significantly flow-limiting stenoses is associated with altered platelet reactivity and formation of platelet-leukocyte complexes. Methods: One hundred patients with stable angina were studied. Hemodynamic significance of all coronary stenoses was assessed with Fractional Flow Reserve (FFR). Patients were classified FFR-positive (at least one lesion with FFR 0.80). Whole blood samples were stimulated with increasing concentrations of ADP, TRAP, CRP and Iloprost with substimulatory ADP. Expression of P-selectin as platelet activation marker and platelet-leukocyte complexes were measured by flowcytometry. Patients were stratified on clopidogrel use. FFR positive and negative patient groups were compared on platelet reactivity and platelet-leukocyte complexes. Results: Platelet reactivity between FFR-positive patients and FFR-negative patients did not differ. A significantly lower percentage of circulating platelet-neutrophil complexes in FFR-positive patients and a similar non-significant decrease in percentage of circulating platelet-monocyte complexes in FFR-positive patients was observed. Conclusion: The presence of hemodynamically significant coronary stenoses does not alter platelet reactivity but is associated with reduced platelet-neutrophil complexes in peripheral blood of patients with stable coronary artery disease
    • 

    corecore