19 research outputs found
Dissecting the limited genetic overlap of Parkinson's and Alzheimer's disease
Parkinson's disease and Alzheimer's disease show overlapping features both clinically and neuropathologically and elucidating shared mechanisms could have important implications for therapeutic strategies. Evidence for genetic overlap is limited, although enrichment of heritability in genomic regions relevant to microglia has been demonstrated in both disorders. Using summary statistics from genome-wide association studies, we assessed genetic covariance stratified by cell types and local genetic correlation between Parkinson's and Alzheimer's disease. Significant covariance was observed for neurons only (p = 0.00046), and local genetic correlation was significant only in the human leukocyte antigen region (p = 1.0e-05). Our findings support a minor genetic overlap between these two disorders
Heritability Enrichment Implicates Microglia in Parkinson's Disease Pathogenesis
Objective Understanding how different parts of the immune system contribute to pathogenesis in Parkinson's disease is a burning challenge with important therapeutic implications. We studied enrichment of common variant heritability for Parkinson's disease stratified by immune and brain cell types. Methods We used summary statistics from the most recent meta-analysis of genomewide association studies in Parkinson's disease and partitioned heritability using linkage disequilibrium score regression, stratified for specific cell types, as defined by open chromatin regions. We also validated enrichment results using a polygenic risk score approach and intersected disease-associated variants with epigenetic data and expression quantitative loci to nominate and explore a putative microglial locus. Results We found significant enrichment of Parkinson's disease risk heritability in open chromatin regions of microglia and monocytes. Genomic annotations overlapped substantially between these 2 cell types, and only the enrichment signal for microglia remained significant in a joint model. We present evidence suggesting P2RY12, a key microglial gene and target for the antithrombotic agent clopidogrel, as the likely driver of a significant Parkinson's disease association signal on chromosome 3. Interpretation Our results provide further support for the importance of immune mechanisms in Parkinson's disease pathogenesis, highlight microglial dysregulation as a contributing etiological factor, and nominate a targetable microglial gene candidate as a pathogenic player. Immune processes can be modulated by therapy, with potentially important clinical implications for future treatment in Parkinson's disease. ANN NEUROL 202
Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies
Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
Genome-wide association study of copy number variations in Parkinson's disease
Objective: Our study investigates the impact of copy number variations (CNVs) on Parkinson's disease (PD) pathogenesis using genome-wide data, aiming to uncover novel genetic mechanisms and improve the understanding of the role of CNVs in sporadic PD. Methods: We applied a sliding window approach to perform CNV-GWAS and conducted genome-wide burden analyses on CNV data from 11,035 PD patients (including 2,731 early-onset PD (EOPD)) and 8,901 controls from the COURAGE-PD consortium. Results: We identified 14 genome-wide significant CNV loci associated with PD, including one deletion and 13 duplications. Among these, duplications in 7q22.1, 11q12.3 and 7q33 displayed the highest effect. Two significant duplications overlapped with PD-related genes SNCA and VPS13C, but none overlapped with recent significant SNP-based GWAS findings. Five duplications included genes associated with neurological disease, and four overlapping genes were dosage-sensitive and intolerant to loss-of-function variants. Enriched pathways included neurodegeneration, steroid hormone biosynthesis, and lipid metabolism. In early-onset cases, four loci were significantly associated with EOPD, including three known duplications and one novel deletion in PRKN. CNV burden analysis showed a higher prevalence of CNVs in PD-related genes in patients compared to controls (OR=1.56 [1.18-2.09], p=0.0013), with PRKN showing the highest burden (OR=1.47 [1.10-1.98], p=0.026). Patients with CNVs in PRKN had an earlier disease onset. Burden analysis with controls and EOPD patients showed similar results. Interpretation: This is the largest CNV-based GWAS in PD identifying novel CNV regions and confirming the significant CNV burden in EOPD, primarily driven by the PRKN gene, warranting further investigation.R-AGR-0382 - INTER/JPND/13/01 COURAGE-PD - BALLING Rudolf3. Good health and well-bein
Recommended from our members
Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets
Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD.
Objective To investigate what genes and genomic processes underlie the risk of sporadic PD.
Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks.
Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role.
Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance.
Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
Investigation of autosomal genetic sex differences in Parkinson’s disease
Abstract
Objective: Parkinson’s disease (PD) is a complex neurodegenerative disorder. Men are on average similar to 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner.
Methods: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson’s Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases.
Results: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (similar to 20%).
Interpretation: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients