3 research outputs found

    Live Demonstration: Inexpensive 1024-Channel 3D Telesonography System on FPGA

    Get PDF
    Volumetric ultrasound (US) is a very promising development of medical US imaging. An under-exploited advantage of volumetric US is the mitigation of the strict probe positioning constrains necessary to acquire 2D scans, potentially allowing the decoupling of US image acquisition and diagnosis. However, today’s 3D US systems are large and beset by high power and cost requirements, making them only available in well-equipped hospitals. In this work [1], [2], we propose the first telesonography-capable medical imaging system that supports up to 1024 channels, on par with the state of the art. As a first embodiment, we have implemented our design in a single development FPGA board of 26.7cm×14cm×0.16cm, with an estimated power consumption of 6.1 W. The imager exploits a highly scalable architecture which can be either downscaled for 2D imaging, or further upscaled on a larger FPGA. Moreover, our design supports two types of data inputs: real-time via an optical connection and offline over Ethernet. The reconstructed images can be visualized on an HDMI screen. The estimated cost of the proposed prototype materials is less than 4000e. TABLE I shows the resources utilization of the current design and the extrapolated utilization in case of further upscaling on a larger FPGA

    Inexpensive 1024-Channel 3D Telesonography System on FPGA

    Get PDF
    Volumetric ultrasound (US) is a very promising development of medical US imaging. An under-exploited advantage of volumetric US is the mitigation of the strict probe positioning constrains necessary to acquire 2D scans, potentially allowing the decoupling of US image acquisition and diagnosis. However, today’s 3D US systems are large and beset by high power and cost requirements, making them only available in well-equipped hospitals. In this study, we propose the first telesonography-capable medical imaging system that supports up to 1024 channels, on par with the state of the art. As a first embodiment, we have implemented our design in a single development FPGA board of 26.7cm×14cm×0.16cm, with an estimated power consumption of 6.1 W. Moreover, we have equipped our platform with an automatic positioning module to help any operator defining the scan location, hence allowing for better remote diagnosis. Our design supports two types of data inputs: real-time via an optical connection and offline over Ethernet. The reconstructed images can be visualized on an HDMI screen. The estimated cost of the proposed prototype materials is less than 4000e

    Single-FPGA complete 3D and 2D medical ultrasound imager

    No full text
    3D ultrasound (US) acquisition acquires volumetric images, thus alleviating a classical US imaging bottleneck that requires a highly-trained sonographer to operate the US probe. However, this opportunity has not been explored in practice, since 3D US machines are only suitable for hospital usage in terms of cost, size and power requirements. In this work we propose the first fully-digital, single-chip 3D US imager on FPGA. The proposed design is a complete processing pipeline that includes pre-processing, image reconstruction, and post-processing. It supports up to 1024 input channels, which matches or exceeds state of the art, in an unprecedented estimated power budget of 6.1 W. The imager exploits a highly scalable architecture which can be either downscaled for 2D imaging, or further upscaled on a larger FPGA. Our platform supports both real-time inputs over an optical cable, or test data feeds sent by a laptop running Matlab and custom tools over an Ethernet connection. Additionally, the design allows HDMI video output on a screen
    corecore