14 research outputs found
Ocular findings in patients with spastic type cerebral palsy
BACKGROUND: Refractive errors, strabismus, nystagmus, amblyopia, and cortical visual impairment are observed in 50 to 90 % of patients with cerebral palsy. Ocular abnormalities are known to differ according to cerebral palsy type, and spastic type has been reported to be more likely to be associated with ocular defects than the athetoid and ataxic types. METHODS: A retrospective review of medical records was performed on 105 consecutive children with spastic type of cerebral palsy who underwent ophthalmologic examination between July 2003 and March 2006. The complete ophthalmological examination included measurement of visual acuity, ocular motility, stereoacuity, binocular vision, cycloplegic refraction along with the evaluation of the anterior segment and the posterior segment. RESULTS: The most common ocular abnormality was strabismus (70.5 %) followed by refractive errors (53.3 %). Exodeviation was more commonly found than esodeviation (46 vs 27 patients), and hyperopia was much more prevalent than myopia. A considerable number of patients with strabismus had abnormal ocular motility wherein 16 patients showed inferior oblique overaction and ten superior oblique overaction. Whereas inferior oblique overaction was accompanied similarly in exotropia and esotropia, superior oblique overaction was accompanied more by exotropia. CONCLUSIONS: Children with spastic type cerebral palsy have a high prevalence of strabismus and refractive errors. Exotropia and hyperopia are the most common ocular abnormalities. All children with spastic type of cerebral palsy may require a detailed ophthalmologic evaluation
Treatment of vestibular disorders with weak asymmetric base-in prisms: An hypothesis with a focus on Ménière’s disease
BACKGROUND: Regular treatments of Ménière's disease (MD) vary largely, and no single satisfactory treatment exists. A complementary treatment popular among Dutch and Belgian patients involves eyeglasses with weak asymmetric base-in prisms, with a perceived high success rate. An explanatory mechanism is, however, lacking. OBJECTIVE: To speculate on a working mechanism explaining an effectiveness of weak asymmetric base-in prims in MD, based on available knowledge. METHODS: After describing the way these prisms are prescribed using a walking test and its effect reported on, we give an explanation of its underlying mechanism, based on the literature. RESULTS: The presumed effect can be explained by considering the typical star-like walking pattern in MD, induced by a drifting after-image comparable to the oculogyral illusion. Weak asymmetric base-in prisms can furthermore eliminate the conflict between a net vestibular angular velocity bias in the efferent signal controlling the VOR, and a net re-afferent ocular signal. CONCLUSIONS: The positive findings with these glasses reported on, the fact that the treatment itself is simple, low-cost, and socially acceptable, and the fact that an explanation is at hand, speak in favour of elaborating further on this treatment