1,349 research outputs found
Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models
The approaches taken to describe and develop spatial discretisations of the
domains required for geophysical simulation models are commonly ad hoc, model
or application specific and under-documented. This is particularly acute for
simulation models that are flexible in their use of multi-scale, anisotropic,
fully unstructured meshes where a relatively large number of heterogeneous
parameters are required to constrain their full description. As a consequence,
it can be difficult to reproduce simulations, ensure a provenance in model data
handling and initialisation, and a challenge to conduct model intercomparisons
rigorously. This paper takes a novel approach to spatial discretisation,
considering it much like a numerical simulation model problem of its own. It
introduces a generalised, extensible, self-documenting approach to carefully
describe, and necessarily fully, the constraints over the heterogeneous
parameter space that determine how a domain is spatially discretised. This
additionally provides a method to accurately record these constraints, using
high-level natural language based abstractions, that enables full accounts of
provenance, sharing and distribution. Together with this description, a
generalised consistent approach to unstructured mesh generation for geophysical
models is developed, that is automated, robust and repeatable, quick-to-draft,
rigorously verified and consistent to the source data throughout. This
interprets the description above to execute a self-consistent spatial
discretisation process, which is automatically validated to expected discrete
characteristics and metrics.Comment: 18 pages, 10 figures, 1 table. Submitted for publication and under
revie
The Application Of Local Indicators For Categorical Data (LICD) In The Spatial Analysis Of Economic Development
Firstly, we identify classes of regions presenting different economic development levels using taxonomic methods of multivariate data analysis. Secondly, we apply a join-count test to examine spatial dependencies between regions. It examines the tendency to form the spatial clusters. The global test indicates general spatial interactions between regions, while local tests give detailed results separately for each region. The global test detects spatial clustering of economically poor regions but is statistically insignificant as regards well-developed regions. Thus, the local tests are also applied. They indicate the occurrence of five spatial clusters and three outliers in Poland. There are three clusters of wealth. Their development is based on a diffusion impact of regional economic centres. The areas of eastern and north western Poland include clusters of poverty. The first one is impeded by the presense of three indiviual growth centres, while the second one is out of range of diffusion influence of bigger agglomerations
Leakage-Resilient Cryptography
We construct a stream-cipher SC whose \emph{implementation} is secure even if arbitrary (adversely chosen) information on the internal state of SC is leaked during computation. This captures \emph{all} possible side-channel attacks on SC where the amount of information leaked in a given period is bounded, but overall cankbe arbitrary large, in particular much larger than the internalkstate of SC. The only other assumption we make on the \emph{implementation} of SC is that only data that is accessedkduring computation leaks information. The construction can be based on any pseudorandom generator, and the only computational assumption we make is that this PRG is secure against non-uniform adversaries in the classical sense (i.e. when there are no side-channels).
The stream-cipher SC generates its output in chunks , and arbitrary but bounded information leakage is modeled by allowing the adversary to adaptively chose a function before is computed, she then gets where is the internal state of \SC that is accessed during the computation of . One notion of security we prove for \SC is that is indistinguishable from random when given , and also the complete internal state of SC after has been computed (i.e. our cipher is forward-secure).
The construction is based on alternating extraction (previously used in the intrusion-resilient secret-sharing scheme from FOCS'07). We move this concept to the computational setting by proving a lemma that states that the output of any PRG has high HILL pseudoentropy (i.e. is indistinguishable from some distribution with high min-entropy) even if arbitrary information about the seed is leaked. The amount of leakage \leak that we can tolerate in each step depends on the strength of the underlying PRG, it is at least logarithmic, but can be as large as a constant fraction of the internal state of SC if the PRG is exponentially hard
Clinical Outcomes in Men and Women following Total Knee Arthroplasty with a High-Flex Knee: No Clinical Effect of Gender
While it is generally recognized that anatomical differences exist between the male and female knee, the literature generally refutes the clinical need for gender-specific total knee prostheses. It has been found that standard, unisex knees perform as well, or better, in women than men. Recently, high-flex knees have become available that mechanically accommodate increased flexion yet no studies have directly compared the outcomes of these devices in men and women to see if gender-based differences exist. We retrospectively compared the performance of the high-flex Vanguard knee (Biomet, Warsaw, IN) in 716 male and 1,069 female knees. Kaplan-Meier survivorship was 98.5% at 5.6–5.7 years for both genders. After 2 years, mean improvements in Knee Society Knee and Function scores for men and women (50.9 versus 46.3; 26.5 versus 23.1) and corresponding SF-12 Mental and Physical scores (0.2 versus 2.2; 13.7 versus 12.2) were similar with differences not clinically relevant. Postoperative motion gains as a function of preoperative motion level were virtually identical in men and women. This further confirms the suitability of unisex total knee prostheses for both men and women
Simulating Auxiliary Inputs, Revisited
For any pair of correlated random variables we can think of as a
randomized function of . Provided that is short, one can make this
function computationally efficient by allowing it to be only approximately
correct. In folklore this problem is known as \emph{simulating auxiliary
inputs}. This idea of simulating auxiliary information turns out to be a
powerful tool in computer science, finding applications in complexity theory,
cryptography, pseudorandomness and zero-knowledge. In this paper we revisit
this problem, achieving the following results:
\begin{enumerate}[(a)] We discuss and compare efficiency of known results,
finding the flaw in the best known bound claimed in the TCC'14 paper "How to
Fake Auxiliary Inputs". We present a novel boosting algorithm for constructing
the simulator. Our technique essentially fixes the flaw. This boosting proof is
of independent interest, as it shows how to handle "negative mass" issues when
constructing probability measures in descent algorithms. Our bounds are much
better than bounds known so far. To make the simulator
-indistinguishable we need the complexity in time/circuit size, which is better by a
factor compared to previous bounds. In particular, with our
technique we (finally) get meaningful provable security for the EUROCRYPT'09
leakage-resilient stream cipher instantiated with a standard 256-bit block
cipher, like .Comment: Some typos present in the previous version have been correcte
Leakage-Resilient Cryptography
We construct a stream-cipher SC whose \emph{implementation} is secure even if arbitrary (adversely chosen) information on the internal state of SC is leaked during computation. This captures \emph{all} possible side-channel attacks on SC where the amount of information leaked in a given period is bounded, but overall cankbe arbitrary large, in particular much larger than the internalkstate of SC. The only other assumption we make on the \emph{implementation} of SC is that only data that is accessedkduring computation leaks information. The construction can be based on any pseudorandom generator, and the only computational assumption we make is that this PRG is secure against non-uniform adversaries in the classical sense (i.e. when there are no side-channels).
The stream-cipher SC generates its output in chunks , and arbitrary but bounded information leakage is modeled by allowing the adversary to adaptively chose a function before is computed, she then gets where is the internal state of \SC that is accessed during the computation of . One notion of security we prove for \SC is that is indistinguishable from random when given , and also the complete internal state of SC after has been computed (i.e. our cipher is forward-secure).
The construction is based on alternating extraction (previously used in the intrusion-resilient secret-sharing scheme from FOCS'07). We move this concept to the computational setting by proving a lemma that states that the output of any PRG has high HILL pseudoentropy (i.e. is indistinguishable from some distribution with high min-entropy) even if arbitrary information about the seed is leaked. The amount of leakage \leak that we can tolerate in each step depends on the strength of the underlying PRG, it is at least logarithmic, but can be as large as a constant fraction of the internal state of SC if the PRG is exponentially hard
The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation
We study the computational complexity of problems that arise in abstract
argumentation in the context of dynamic argumentation, minimal change, and
aggregation. In particular, we consider the following problems where always an
argumentation framework F and a small positive integer k are given.
- The Repair problem asks whether a given set of arguments can be modified
into an extension by at most k elementary changes (i.e., the extension is of
distance k from the given set).
- The Adjust problem asks whether a given extension can be modified by at
most k elementary changes into an extension that contains a specified argument.
- The Center problem asks whether, given two extensions of distance k,
whether there is a "center" extension that is a distance at most (k-1) from
both given extensions.
We study these problems in the framework of parameterized complexity, and
take the distance k as the parameter. Our results covers several different
semantics, including admissible, complete, preferred, semi-stable and stable
semantics
Clinical Outcomes in Men and Women following Total Knee Arthroplasty with a High-Flex Knee: No Clinical Effect of Gender
While it is generally recognized that anatomical differences exist between the male and female knee, the literature generally refutes the clinical need for gender-specific total knee prostheses. It has been found that standard, unisex knees perform as well, or better, in women than men. Recently, high-flex knees have become available that mechanically accommodate increased flexion yet no studies have directly compared the outcomes of these devices in men and women to see if gender-based differences exist. We retrospectively compared the performance of the high-flex Vanguard knee (Biomet, Warsaw, IN) in 716 male and 1,069 female knees. Kaplan-Meier survivorship was 98.5% at 5.6-5.7 years for both genders. After 2 years, mean improvements in Knee Society Knee and Function scores for men and women (50.9 versus 46.3; 26.5 versus 23.1) and corresponding SF-12 Mental and Physical scores (0.2 versus 2.2; 13.7 versus 12.2) were similar with differences not clinically relevant. Postoperative motion gains as a function of preoperative motion level were virtually identical in men and women. This further confirms the suitability of unisex total knee prostheses for both men and women
- …