24 research outputs found
Pasture pork, strategies for minimizing environmental impact
The environmental impact of pastured pork production systems is related to climate, soil type, vegetative ground cover species and grazing pressure. Each situation requires a specific analysis. Different strategies have proven to be beneficial to reduce the environmental impact of pastured pork, including: implementing rotational management, employing an appropriate stocking rate, periodically moving shelters, feeding and drinking structures, and utilizing crops for soil bioremediation. In order to maintain a vegetative ground cover of 75%, it is advisable to implement rotational grazing systems with stocking rates lower than 50 growing-finishing pigs/ha or 10 gestating sows/ha
Use of goats to control undesirable vegetation
The benefits of using goats (Capra hircus hircus) to control undesirable vegetation in many different environmental situations are well documented by research data. Nonetheless, this approach is severely underutilized. Environmental concerns and the increased costs of herbicides and mechanical control methods provide new opportunities to use goats as biological agents for the control of unwanted vegetation. The goat lends itself to conservation grazing better than any other domestic livestock species when utilized in a sustainable manner. Goats can be quite destructive, however, but any environmental hazard associated with goats is essentially a failure inadequate management by man
Use of an herbal dewormer for the control of gastric intestinal tract nematodes in meat goats
Two trials were conducted to determine the efficacy of a commercial herbal dewormer (HDC) to decrease fecal eggs per gram (EPG) in goats grazing either Festuca arundinacea (Trial 1) or Lolium multiflorum (Trial 2) pastures. In trial 1, EPG of goats orally-dosed with HDC decreased and leveled out at 742 EPG. In trial 2, oral fenbendazole and one or two weekly doses of HDC had no effect on EPG. Within the confines of these trials, HDC was mostly ineffective in reducing EPG in goats grazing pastures infected with GIT nematodes. (Spanish
Alternatives to traditional anthelmintics to control gastrointestinal nematodes in grazing meat goats
Studies were conducted to determine the efficacy of a commercial herbal dewormer (HDC, Studies 1 and 2) and a tanniferous perennial legume (Study 3) to reduce fecal egg counts (FEC) in grazing goats (Capra hircus). Goats grazed Festuca arundinacea (Study 1), Lolium multiflorum L. (Study 2), and Lespedeza cuneata or Tripsacum dactyloides (Study 3). In study 1, the eggs per gram (EPG) of feces from goats orally-drenched weekly with HDC decreased from 1,006 to 758 by Day 33, then stabilized at a mean of 740 EPG until the end of the trial (Day 103). Conversely, FEC of goats drenched with ivomectin (IVO) decreased from 935 EPG to 163 EPG by Day 26, then steadily increased to 646 by Day 103. The EPG differed between IVO and HDC on Day 12, 19, 26, 33, 40 (P <0.0001), 47 (P <0.007), 54 (P <0.07), 61 (P<0.002), 68 (P <0.04) and 89 (P<0.09). In Study 2, neither oral fenbendazole nor one or two weekly doses of HDC had an effect on FEC, an indication of resistance to fenbendazole by gastrointestinal nematodes. In Study 3, FEC of goats grazing L. cuneata and T. dactyloides for 5 wk had decreased from 860 to 500 EPG for the former and increased from 1630 to 2310 EPG for the latter (P <0.06). Thereafter, FEC of goats switched from T. dactyloides to L. cuneata decreased to 1595, 1120 and 410 during the following 3 wk, whereas FEC of goats switched from L. cuneata to T. dactyloides still decreased to 220, 195, and 70 EPG (P <0.007, P <0.02, and P <.09, respectively). Within the confines of studies 1 and 2, HDC showed some or no effectiveness in reducing FEC in goats grazing infected pastures, whereas there was a significant reduction in FEC of goats grazing L. cuneata
PF 09. Storage and scarification effects on Cajanus cajan germination
In order to establish the effect of storage and scarification on germination of Cajanus caján (L.) Millsp, a randomized block experiment, with six replications was performed. Seeds were stored for 2 and for 10 months, scarification methods were: immersion in Water for 15, 12 y 6 h, soaked in concentrated sulfuric acid for 3 and 5 min, immersion in boiling water for 30 seconds and control without treatment. Cultivar TAC-401 seeds were used, harvested in Ana María Campos farm, Faculty of Agronomy (LUZ); keeped under refrigeration since evaluation. 25 seeds were placed in each petrie dishes. During 7 days daily counts were made of germinated seeds, descarting them. Daily irrigation with six drops of destiled water. Statistical differences (P<.01) for storage periods, scarification methods and interaction were detected. Higher germination percentages were obteined for seeds stored during 10 months (84.86 %). The best scarification methods was immersion in water
Pasture-based pig systems: effects of stocking rate and stocking method on the vegetative ground cover and soil properties
En décadas recientes, se ha observado un cambio en los hábitos de compra de un sector de los consumidores de carnes porcinas, quienes inclinan sus preferencias hacia productos provenientes de sistemas de producción percibidos como más respetuosos tanto del medio ambiente como del bienestar animal, donde se equilibren la producción con la conservación de los recursos. Los sistemas de producción de porcinos a pastoreo donde las diversas etapas productivas son llevadas a cabo en pastizales, representan una alternativa de compra para este grupo de consumidores en búsqueda de productos identificados como provenientes de sistemas más sostenibles. Una exhaustiva revisión bibliográfica dio lugar a dos artículos de revisión. En el primero se caracterizan a los sistemas de producción de cerdos a pastoreo, mientras que en el segundo se identifican potenciales amenazas que pueden poner en riesgo el bienestar animal en estos sistemas pecuarios. A partir de dichas revisiones se reconocen a las prácticas de manejo de los animales y del pastizal, como factores claves para mejorar la sostenibilidad de estos sistemas. La limitada información disponible, relacionada con el impacto ambiental de los factores de manejo de pasturas perennes en sistemas de producción de porcinos a pastoreo, dio origen a los objetivos que enmarcan la presente tesis: describir los sistemas de producción de cerdos a pastoreo, y determinar los efectos de las prácticas de manejo de las pasturas en la cobertura vegetal y en los nutrientes del suelo en pastizales de bermuda (Cynodon dactylon) y festuca alta (Schedonorus arundinaceus). Para su evaluación, se llevaron a cabo tres estudios de campo en el Center for Environmental Farming System (CEFS) en North Carolina, USA. En el primer y segundo estudio se evaluo el efecto de la carga ganadera porcina. En el primer trabajo se evaluaron cuatro cargas ganaderas de cerdos en crecimiento-acabado (37, 74, 111 and 148 cerdos ha-1) en pasturas de bermuda, bajo sistema de manejo continuo durante dos ciclos de pastoreo de 14 semanas (Julio a Septiembre, y Mayo a Agosto) utilizando cerdos desde 27 kg hasta 122 kg de media. Mientras que en el segundo estudio de campo, se utilizaron cerdas gestantes a tres cargas ganaderas (10, 15 y 25 cerdas ha-1) durante tres ciclos de pastoreo de 8 semanas (Enero a Marzo, Septiembre a Noviembre, y Abril a Junio) en pastizales de bermuda. Las cerdas utilizadas presentaron diferencias en peso inicial y número de partos entre los tres ciclos de pastoreo (294, 212 y 186 kg peso vivo promedio para los animales utilizados en los ciclos de pastoreo 1, 2 y 3, respectivamente). Estos animales fueron manejados siguiendo un esquema de manejo rotacional, en pasturas divididas en nueve secciones del mismo tamaño. La sección central fue considerada el área de servicio, con los cobertizos, y las fuentes de agua y las otras 8 secciones se consideraron áreas de pastoreo. El suplemento alimenticio se ofreció de manera restringida en el área de pastoreo una vez al día. Las cerdas tuvieron acceso permanente al área de servicio, y a las secciones de pastoreo durante una semana, de manera secuencial. En el tercer trabajo, se compararon tres métodos de pastoreo (Continuo, rotational y franjas de pastoreo) en pasturas de festuca alta manejadas con una carga ganadera de 47 cerdos en crecimiento-acabado (24 a 85 kg peso promedio) ha-1, durante dos ciclos de pastoreo (Diciembre a Marzo, y Mayo a Agosto). El método rotacional fue semejante al implementado en el estudio de campo n 2, mientras que en el sistema de franjas de pastoreo, las pasturas fueron divididas en 8 franjas utilizadas secuencialmente. Los cobertizos, las fuentes de agua y los comederos eran movidos semanalmente con los animales. Antes de iniciar los experimentos, los cerdos tuvieron un periodo de acostumbramiento a las condiciones al aire libre, y a las cercas eléctricas de dos semanas. Durante los periodos de pastoreo los animales tuvieron libre acceso a los cobertizos, a las fuentes de agua, y a un alimento concentrado elaborado en la finca, y que contenía, maíz, soya, y pre-mezclas de vitaminas y minerales. La cobertura vegetal fue estimada con el método modificado de step-point. Se recolectaron muestras de suelo hasta una profundidad de 90 cm, antes de introducir los cerdos a las parcelas y luego de retirarlos de las mismas. Las muestras de suelo fueron analizadas para determinar su concentración de nutrientes. Los diseños experimentales correspondieron a bloques completos al azar. La información fue analizada mediante análisis de varianza/covarianza mediante modelos lineales mixtos, utilizando el procedimiento PROC GLIMMIX de SAS/STAT ® Versión 9.4. El estudio de campo 1 mostró en ambos períodos de pastoreo una mayor cobertura final del suelo en los potreros manejados con 37 cerdos ha-1 (110% y 187% más de cobertura del suelo al final de los períodos de pastoreo 1 y 2, respectivamente), en comparación con la cobertura del suelo encontrada en potreros manejados con 148 cerdos ha − 1. De manera similar, las muestras de suelo de potreros manejados con 37 cerdos ha-1 mostraron menores valores de NO3-N (159% menos), Total-N (37% menos) y Total-P (31% menos) que las muestras recolectadas de potreros manejados con 148 cerdos ha-1. Los resultados de este estudio validaron también la existencia de un patrón espacial para las propiedades del suelo, con diferencias entre las posiciones y profundidades de muestreo. Las muestras de suelo recolectadas en el centro de los potreros mostraron menor densidad aparente del suelo (1.1 Mg m−3) en comparación con las recolectadas en las posiciones internas o externas que no difirieron y promediaron 1.3 Mg m−3. De la misma manera, el N-total (37%) y el P-total (31%) del suelo fueron más bajos, en las muestras recolectadas en el centro de los potreros. En general, se observaron mayores valores para las propiedades del suelo en la capa superior del suelo (0-30 cm). En el estudio de campo 2, los potreros manejados con 10 cerdas ha-1 mostraron 35% más cobertura del suelo que los potreros con una carga ganadera de 25 cerdas ha-1. Los potreros manejados con cargas ganaderas equivalentes a 15 cerdas ha-1 presentaron valores de cobertura del suelo intermedios. Las secciones de los potreros destinadas al pastoreo tenían 68% más cobertura de suelo que las secciones de servicio, donde se encontraban los cobertizos y las fuentes de agua. Las muestras de suelo mostraron menor concentración de NH4+-N (47%), NO3−-N (129%), P (53%), Zn (84%) y Cu (29%) en suelos de pasturas manejadas con 10 cerdas ha−1 cuando se comparan con muestras recolectadas de potreros manejados con 25 cerdas ha−1. Se observó una tendencia general a mayores concentraciones de nutrientes del suelo, en la capa de suelo de 0 a 15 cm. En el último estudio de campo se registró una mayor cobertura vegetal final (22% más) en los potreros bajo los sistemas de manejo rotacional y en franjas. Las propiedades del suelo mostraron un efecto del sistema de manejo, con menores densidad aparente y concentraciones en el suelo de NO3--N (29% menos), P (23% menos), K (22% menos), Mn (14% menos), Zn (16% menos) y Cu (11% menos), observados en muestras de suelo provenientes de potreros bajo el sistema de manejo rotacional en comparación con los valores observados en potreros manejados de forma continua. Al final del segundo ciclo de pastoreo, no se detectaron diferencias en la composición botánica de los potreros que resultaron dominados por festuca alta (66%). Los cerdos de los potreros manejados de manera rotacional mostraron un mejor rendimiento animal (mayor ganancia diaria de peso (7%) y relación ganancia- alimento (8%) en comparación con los animales de los potreros manejados bajo el método continuo. Los resultados indican el potencial de los sistemas de manejo rotacional y en en franjas de pastoreo para definir sistemas sostenibles de producción porcina basados en pasturas. Los resultados de estos estudios reflejan la influencia positiva del uso de cargas ganaderas ajustadas al sistema de producción, y de los sistemas de manejo de pasturas rotacionales para sistemas de manejo de cerdos en pastizales perennes, en términos de propiedades del suelo, cobertura vegetal y comportamiento productivo de los animales. La implementación de mejores prácticas de manejo permitiría el fomento de la multifuncionalidad de servicios que pueden ofrecer estos sistemas de producción. ----------ABSTRACT---------- In recent decades, a change has been observed in the purchasing habits of a sector of pork consumers, who incline their preferences towards products from production systems perceived as more respectful of the environment and animal welfare, where production meet conservation of resources. Pasture pig production systems where the various productive stages are carried out in pastures, represent an alternative for this group of consumers in search of products identified as originated in more sustainable systems. A comprehensive study of literature resulted in two review articles. The first characterizes pasture based pig production systems, while the second identifies potential threats that may put animal welfare in these livestock systems at risk. From these reviews, animal and pasture management practices are recognized as key factors to improve the sustainability of these systems. The limited information available on the environmental impact of the management factors of perennial pastures in grazing pig production systems, gave rise to the objectives that frame this thesis: describe the production systems of grazing pigs, and determine the effects of pasture management practices in vegetation cover and soil nutrients in grasslands of bermuda (Cynodon dactylon) and tall fescue (Schedonorus arundinaceus). For its evaluation, three field studies were carried out at the Center for Environmental Farming System (CEFS) in North Carolina, USA. In the first and second studies, the effect of the pig stocking rate was evaluated. In the first work, four pig stocking rates (37, 74, 111 and 148 pigs ha-1) were evaluated in bermudagrass pastures, under continuous grazing during two grazing cycles of 14 weeks each (July to September, and May to August) using growing-finishing pigs from 27 kg to 122 kg on average. While in the second field study, pregnant sows were used in bermudagrass at three stocking rates (10, 15 and 25 sows ha-1) during three grazing cycles of 8 weeks (January to March, September to November, and April to June). The sows used showed differences in initial weight and number of farrowings between the three grazing cycles (294, 212 and 186 kg average live weight for the animals used in grazing cycles 1, 2 and 3, respectively). These animals were managed following a rotational management scheme, in pastures divided into nine equal-size sections. The central section was considered the service area, with the shelter and the water sources, and the other 8 sections were considered grazing areas. The food supplement was offered on a restricted basis in the grazing area once a day. The sows had permanent access to the service area, and sequentially weekly acces to the grazing sections. In the third study, three grazing methods (continuous, rotational and grazing strips) were compared in tall fescue pastures managed with a stocking rate of 47 growing-finishing pigs (24 to 85 kg average weight) ha-1, during two grazing cycles (December to March, and May to August). The rotational method was similar to that implemented in the field study n 2, while in the grazing strip system, the pastures were divided into 8 strips used sequentially. The shelters, the water drinkers and the feeders were moved weekly with the animals. Prior to starting the experiments, pigs were given two weeks of acclimation to the outdoor paddocks and the electrical fences. During the graze period the animals had free access to shelter, water drinkers, and to a home-mix feed containing corn, soybean, vitamins and a mineral premix. Ground cover was estimated using a modified step-point technique. Soil samples, up to 90 cm depth, were collected before introducing pigs to the paddocks and following their removal, and were analyzed for soil nutrients concentrations. The experimental designs were a randomized complete blocks. Data were analyzed by analysis of variance/covariance fitting generalized mixed models through the PROC GLIMMIX procedure of SAS/STAT ® Version 9.4 (SAS Institute Inc., Cary, NC). Field study 1 showed in both grazing periods greater final ground cover in paddocks managed with 37 pigs ha−1 (110 % and 187 % more ground cover at the end of the grazing periods 1 and 2, respectively), compared to the ground cover found in paddocks managed with 148 pigs ha−1. Similarly, soil samples from paddocks managed with 37 pigs ha−1 showed 159% less NO3-N, 37% less Total-N, and 31% less Total-P that samples collected from paddocks managed with 148 pigs ha−1. The results of this study validated also the existence of a spatial pattern of soil properties, which differed among sampling positions and depths. Soil samples collected in the center position of the paddocks showed lesser soil bulk density (1.1 Mg m−3) compared with those collected in the inner or in the outer positions which did not differ and averaged 1.3 Mg m−3. Correspondingly, soil Total-N and Total-P were 37 and 31% lower respectively in samples collected from the center of the paddocks. In general, greater values for soil properties were observed in the top soil layer. In field study 2, paddocks managed with 10 sows-gilts ha−1 showed more (35.4 %) ground cover than paddocks with a stocking rate of 25 sows-gilts ha−1. Paddocks managed with stocking rate equivalent to 15 sows-gilts ha−1 presented intermediate ground cover values. The graze section of the paddocks had 68% more ground cover than the service sections. Soil samples showed lower soil concentration of NH4+-N (47%), NO3−-N (129%), P (53%), Zn (84%) and Cu (29%) for pastures managed with 10 sows-gilts ha−1 when compared with samples collected from paddocks managed with 25 sows-gilts ha−1. It was observed a general tendency for higher concentrations of soil nutrients in the 0 to 15 cm soil layer In the last field study greater final vegetative ground cover (22% more) was recorded in paddocks managed with the rotational and strip grazing stocking methods. Soil properties showed an effect of the stocking method, with lower bulk density, and soil concentrations of NO3- -N (29% less), P (23% less), K (22% less), Mn (14% less), Zn (16% less) and Cu (11% less) observed in soil samples from paddocks under the rotational stocking method compared with the values observed in paddocks managed continuously. At the end of the second grazing cycle, no differences were detected in botanical composition of the paddocks which were dominated by tall fescue (66%). Pigs from paddocks managed rotationally showed a better animal performance (greater weight daily gain (7%), and gain to feed ratio (8%) when compared with animals in paddocks managed under the continuous stocking method. The results indicated the potential of rotational and strip-grazing stocking methods to be implemented in sustainable pasture-based pig production systems. The results of these studies revelead the positive influence of appropriate stocking rates and rotational stocking methods in pastured pig systems, in terms of vegetative ground cover maintenance, soil properties, and animal performance. The implementation of best management practices for these production systems will empower the maintenance of the ecosystem multifunctionality
PF 10. Scarification of Clitorea ternatea L. seeds
The objective of this study was determine the effects of scarification with concentrated sulfuric acid (5 and 8 min), and immersion in water (24 and 48 hr) on germination of Clitoria ternatea L. Seeds were harvested in 116 days old trees, located at Ana Maria Campos farm, a very dry forest area, and weren’t stored. Experimental design used was a completely randomized, with 5 replications. 20 seeds were placed in petrie dishes. During 15 days daily counts were made, descarting germinated seeds. Were establish statistical difference (P < .0001) among treatments. Results showed that sulfuric acid positively affected germination, with values of 58.63 and 53.3% for 5 an 8 min respectively. Immersed in water Seeds and didn’t treated didn’t germinate. Treatment with sulfuric acid improve germination of Clitoria ternatea L. seeds
PF 11. Nitrogen and phosphorus fertilization on Clitoria ternatea L. seeds quality
Two studies were performed in order to evaluate the effect of N (0, and 200 kg/ha/year) and P (0, 150 and 300 kg/ha/year) fertilization at initial stage, on quality of Clitoria ternatea seeds. In both studies a completely randomized design were used, with 5 and 10 replication respectively. Seeds were collected in 116 days old shrubs, located at Ana Maria Campos farm, a very dry forest area, and weren’t stored. 100 seeds weight were recorded W100. Germination percentage was evaluated GP, in seeds scarificated with sulfuric acid 98 % during 5 min. Daily counts were made during 15 days. N improved (P<.01) W100, 5.74 and 5.97 gr (0 and 200 kg/ha/year), P decreased its values (P<.01), 6.15; 5.6 and 5.82 gr (0, 150 and 300 kg/ha/year respectively). Interaction N*P was significant (P<.01), with values of 5.42; 5.94; 5.86; 6.88; 5.26 and 5.78 gr for combinations N*P: 0-0; 0-150; 0-300; 200-0; 200-150 and 200-300 respectively. GP was affected by N (P<.01) 53.79 and 29.03 % for 0 and 200 kg/ha/year respectively, and by interantion N*P (P<.01), with values of 39.01; 68.51; 53.88; 42.51; 12.27 and 34.01 % for combinations N*P: 0-0; 0-150; 0-300; 200-0; 200-150 and 200-300 respectively. P did not affected this variable. N and P applied during stablisment, affects W100 and GP of Clitoria ternatea seeds
Designing pasture subdivisions for practical management of hogs
First, the rotation approach to pig grazing is described. Then all assumptions and goals of this method are detailed: soil protection, quality of forage, stocking rate, rotational management, logistic aspects, time of return between two groups, etc.
Finally, several examples of design are presented for different kind of animals; breeding sows, gestating sows, from growing to finishing pigs. This will help breeders or advisors to choose which system is well-adapted and how this should be implemented.
This tool is relevant to all farmers who hope to better manage their pig grazing system and is not location specific
Animal Welfare and Production Challenges Associated with Pasture Pig Systems: A Review
A review of published literature was conducted to identify pasture pig production system features that pose risks to animal welfare, and to develop recommendations aimed at improving the wellbeing of the animals managed in those systems. Pasture pig production systems present specific challenges to animal welfare that are inherent to the nature of these systems where producers have little room to make improvements. However, these systems present other challenges that could be reduced with a carefully designed system, by adopting appropriate management strategies and by avoiding management practices that are likely to negatively affect animal wellbeing. In pasture pig production systems, exposure to extreme temperatures, potential contact with wildlife and pathogens (especially parasites), vulnerability to predators, risk of malnutrition, pre-weaning piglet mortality, complexity of processes for monitoring and treating sick animals, and for cleaning and disinfection of facilities and equipment are among the main threats to animal welfare