10,250 research outputs found

    Corporata Taxes, Growth and Welfare in a Schumpeterian Economy

    Get PDF
    Endogenous Growth, Market Structure, Dividends, Corporate Taxes

    The Employment (and Output) of Nations: Theory and Policy Implications

    Get PDF
    Product Market, Labor Market, Market Structure, Employment, Unemployment

    Fast computation of multi-scale combustion systems

    Get PDF
    In the present work, we illustrate the process of constructing a simplified model for complex multi-scale combustion systems. To this end, reduced models of homogeneous ideal gas mixtures of methane and air are first obtained by the novel Relaxation Redistribution Method (RRM) and thereafter used for the extraction of all the missing variables in a reactive flow simulation with a global reaction mode

    Resource Wealth, Innovation and Growth in the Global Economy

    Get PDF
    We analyze the relative growth performance of open economies in a two-country model where different endowments of labor and a natural resource generate asymmetric trade. A resource-rich economy trades resource-based intermediates for final manufacturing goods produced by a resource-poor economy. Productivity growth in both countries is driven by endogenous innovations. The effects of a sudden increase in the resource endowment depend crucially on the elasticity of substitution between resources and labor in interme- diates' production. Under substitution (complementarity), the resource boom generates higher (lower) resource income, lower (higher) employment in the resource-intensive sector, higher (lower) knowledge creation and faster (slower) growth in the resource-rich economy. The resource-poor economy adjusts to the shock by raising (reducing) the relative wage, and experiences a positive (negative) growth effect that is exclusively due to trade.Endogenous Growth, Endogenous Technological Change, Natural Resources, International Trade.

    Growth on a Finite Planet: Resources, Technology and Population in the Long Run

    Get PDF
    We study the interactions between technological change, resource scarcity and population dynamics in a Schumpeterian model with endogenous fertility. There exists a pseudo- Malthusian equilibrium in which population is constant and income grows exponentially: the equilibrium population level is determined by resource scarcity but is independent of technology. The stability properties are driven by (i) the income reaction to increased resource scarcity and (ii) the fertility response to income dynamics. If labor and resources are substitutes in production, income and fertility dynamics are self-balancing and the pseudo-Malthusian equilibrium is the global attractor of the system. If labor and resources are complements, income and fertility dynamics are self-reinforcing and drive the economy towards either demographic explosion or human extinction. Introducing a minimum resource requirement, we obtain a second steady state implying constant population even under complementarity. The standard result of exponential population growth appears as a rather special case of our model.Endogenous Innovation, Resource Scarcity, Population Growth, Fertility Choices

    Open charm meson spectroscopy: Where to place the latest piece of the puzzle

    Full text link
    We discuss how to classify the csˉc{\bar s} meson DsJ(3040)D_{sJ}(3040) recently discovered by the BaBar Collaboration. We consider four possible assignments, together with signatures useful to distinguish among them.Comment: RevTeX, 5 pages, 1 eps figur

    Scale Effects, An Error of Aggregation Not Specification: Empirical Evidence

    Get PDF
    In a set of influential papers, Charles Jones (1995a, 1995b, 1999) argued that R&D based endogenous growth models are inconsistent with the data. He showed, in a very striking manner, that the scale effects prediction of early endogenous growth models (e.g. Romer, 1986 and 1990, Grossman and Helpman, 1991, and Aghion and Howitt, 1992) is not borne out in the data. Standard endogenous growth models attribute constant or increasing returns in the stock of knowledge or technology to the aggregate level of resources. This assumption leads to the counterfactual prediction that the rate of productivity growth should be increasing in the aggregate amount of resources devoted to accumulating knowledge. This paper presents empirical evidence in support of R&D based endogenous growth models without scale effects (e.g. Young, 1998, Howitt, 1999, Thompson, 2001, and Peretto and Smulders, 2002). In these models the average level of workers or R&D workers per firm drives growth as opposed to the aggregate level and do not share the scale effects property in the limit. Using data for the US covering 1964-2001, we show that when the number of employees or scientists/engineers are scaled down on a per establishment basis, the empirics support the latter version of endogenous growth models. Specifically, the long-run size of establishments is stable, neither declining or growing in the long-run, where size is measured in two ways: by workers per establishment and R&D workers per establishment. Second, we demonstrate a positive effect running from average establishment size to productivity growth as predicted by the theories.

    Exploring the mechanism of formation of native-like and precursor amyloid oligomers for the native acylphosphatase from Sulfolobus solfataricus

    Get PDF
    Over 40 human diseases are associated with the formation of well-defined proteinaceous fibrillar aggregates. Since the oligomers precursors to the fibrils are increasingly recognized to be the causative agents of such diseases, it is important to elucidate the mechanism of formation of these early species. The acylphosphatase from Sulfolobus solfataricus is an ideal system as it was found to form, under conditions in which it is initially native, two types of prefibrillar aggregates: (1) initial enzymatically active aggregates and (2) oligomers with characteristics reminiscent of amyloid protofibrils, with the latter originating from the structural reorganization of the initial assemblies. By studying a number of protein variants with a variety of biophysical techniques, we have identified the regions of the sequence and the driving forces that promote the first aggregation phase and show that the second phase consists in a cooperative conversion involving the entire globular fol
    corecore