27 research outputs found

    Phase Ib study of CP-868,596, a PDGFR inhibitor, combined with docetaxel with or without axitinib, a VEGFR inhibitor

    Get PDF
    BACKGROUND: Tumoural interstitial hypertension, possibly modulated by platelet-derived and vascular endothelial growth factor receptors (PDGFR and VEGFR), may mediate resistance to chemotherapy. METHODS: Forty-eight patients with advanced solid tumours received oral PDGFR inhibitor CP-868,596 (60-100 mg twice daily (BID)) and docetaxel (75-100 mg m⁻²), or CP-868,596 (60 mg BID), docetaxel (75 mg m⁻²), and VEGFR inhibitor axitinib (5 mg BID). RESULTS: The CP-868,596/docetaxel was escalated as above. The CP-868,596/docetaxel/axitinib was not dose escalated because of increased incidence of mucositis-like adverse events (AEs) with concurrent neutropenia relative to that expected for docetaxel. All tested regimens were tolerable, including 100 mg BID CP-868,596 (recommended phase II dose) plus 100 mg m⁻² docetaxel (maximum approved dose). Most treatment-emergent AEs were mild-moderate and reversible, commonly including nausea, diarrhoea, vomiting, constipation, fatigue, and anaemia (CP-868,596/docetaxel), and hypertension, lethargy, diarrhoea, and fatigue (CP-868,596/docetaxel/axitnib). Pharmacokinetics were unaffected by co-administration. Twenty-one patients achieved stable disease, including all seven evaluable on CP-868,596/docetaxel/axitinib. All nine CP-868,596/docetaxel/axitinib patients received therapy for a median of six (range, 3-16) cycles. CONCLUSIONS: The CP-868,596/docetaxel was well tolerated, but increased efficacy was not observed. Addition of axitinib delivered greater benefits than expected in the number of patients achieving prolonged stable disease with a moderate increase in AEs

    Platelet-derived growth factor receptor-β, carrying the activating mutation D849N, accelerates the establishment of B16 melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Platelet-derived growth factor (PDGF)-BB and PDGF receptor (PDGFR)-β are mainly expressed in the developing vasculature, where PDGF-BB is produced by endothelial cells and PDGFR-β is expressed by mural cells, including pericytes. PDGF-BB is produced by most types of solid tumors, and PDGF receptor signaling participates in various processes, including autocrine stimulation of tumor cell growth, recruitment of tumor stroma fibroblasts, and stimulation of tumor angiogenesis. Furthermore, PDGF-BB-producing tumors are characterized by increased pericyte abundance and accelerated tumor growth. Thus, there is a growing interest in the development of tumor treatment strategies by blocking PDGF/PDGFR function. We have recently generated a mouse model carrying an activated PDGFR-β by replacing the highly conserved aspartic acid residue (D) 849 in the activating loop with asparagine (N). This allowed us to investigate, in an orthotopic tumor model, the role of increased stromal PDGFR-β signaling in tumor-stroma interactions.</p> <p>Methods</p> <p>B16 melanoma cells lacking PDGFR-β expression and either mock-transfected or engineered to express PDGF-BB, were injected alone or in combination with matrigel into mice carrying the activated PDGFR-β (D849N) and into wild type mice. The tumor growth rate was followed and the vessel status of tumors, i.e. total vessel area/tumor, average vessel surface and pericyte density of vessels, was analyzed after resection.</p> <p>Results</p> <p>Tumors grown in mice carrying an activated PDGFR-β were established earlier than those in wild-type mice. In this early phase, the total vessel area and the average vessel surface were higher in tumors grown in mice carrying the activated PDGFR-β (D849N) compared to wild-type mice, whereas we did not find a significant difference in the number of tumor vessels and the pericyte abundance around tumor vessels between wild type and mutant mice. At later phases of tumor progression, no significant difference in tumor growth rate was observed between wild type mice and mutant mice, although the pericyte coverage was higher around tumor vessels from mutant mice.</p> <p>Conclusion</p> <p>Our findings suggest that the activated PDGFR-β (D849N) in the host animal increased the total vessel area and the average vessel surface even in PDGF-negative tumors, resulting in a shorter lag phase during tumor establishment.</p

    Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma

    Get PDF
    Contains fulltext : 79699.pdf (publisher's version ) (Closed access)BACKGROUND: We evaluated the efficacy of imatinib mesylate in addition to hydroxyurea in patients with recurrent glioblastoma (GBM) who were either on or not on enzyme-inducing anti-epileptic drugs (EIAEDs). METHODS: A total of 231 patients with GBM at first recurrence from 21 institutions in 10 countries were enrolled. All patients received 500 mg of hydroxyurea twice a day. Imatinib was administered at 600 mg per day for patients not on EIAEDs and at 500 mg twice a day if on EIAEDs. The primary end point was radiographic response rate and secondary end points were safety, progression-free survival at 6 months (PFS-6), and overall survival (OS). RESULTS: The radiographic response rate after centralised review was 3.4%. Progression-free survival at 6 months and median OS were 10.6% and 26.0 weeks, respectively. Outcome did not appear to differ based on EIAED status. The most common grade 3 or greater adverse events were fatigue (7%), neutropaenia (7%), and thrombocytopaenia (7%). CONCLUSIONS: Imatinib in addition to hydroxyurea was well tolerated among patients with recurrent GBM but did not show clinically meaningful anti-tumour activity

    Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-β and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation

    Get PDF
    Elevated intratumoral interstitial fluid pressure (IFP) and tumour hypoxia are independent predictive factors for poor survival and poor treatment response in cancer patients. However, the relationship between IFP and tumour hypoxia has not yet been clearly established. Preclinical studies have shown that lowering IFP improves treatment response to cytotoxic therapy. Interstitial fluid pressure can be reduced by inhibition of phosphorylated platelet-derived growth factor receptor-β (p-PDGFR-β), a tyrosine kinase receptor frequently overexpressed in cancer stroma, and/or by inhibition of VEGF, a growth factor commonly overexpressed in tumours overexpressing p-PDGFR-β. We hypothesised that Imatinib, a specific PDGFR-β inhibitor will, in addition to p-PDGFR-β inhibition, downregulate VEGF, decrease IFP and improve tumour oxygenation. A549 human lung adenocarcinoma xenografts overexpressing PDGFR-β were grown in nude mice. Tumour-bearing animals were randomised to control and treatment groups (Imatinib 50 mg kg−1 via gavage for 4 days). Interstitial fluid pressure was measured in both groups before and after treatment. EF5, a hypoxia marker, was administered 3 h before being killed. Tumours were sectioned and stained for p-PDGFR-β, VEGF and EF5 binding. Stained sections were viewed with a fluorescence microscope and image analysis was performed. Imatinib treatment resulted in significant reduction of p-PDGFR-β, VEGF and IFP. Tumour oxygenation was also significantly improved. This study shows that p-PDGFR-β-overexpressing tumours can be effectively treated with Imatinib to decrease tumour IFP. Importantly, this is the first study demonstrating that Imatinib treatment improves tumour oxygenation and downregulates tumour VEGF expression

    A novel GFP nude rat model to investigate tumor-stroma interactions

    Get PDF
    Backgroud: A key strategy for the study of the tumor microenvironment is to implant human tumor cells in an immunodeficient rodent strain ubiquitously expressing a fluorescent marker. Here, a novel nude rat expressing a green fluorescent protein (GFP) transgene was established and engrafted with primary human tumor tissue in order to separate tumor from stromal cell populations for subsequent molecular analysis. Methods: SD-TG (GFP) 2BalRrrc transgenic rats were crossed with HsdHan™: rnu/rnu Rowett nude rats to develop a GFP expressing immunocompromised rat. PCR and flow cytometry were used to follow the GFP genotype and phenotype in newborns. After three to four generations, animals were implanted with 4 T1 dsRed murine breast cancer cells or primary human glioblastoma (GBM) biopsies to generate xenografts for subsequent separation by fluorescence-activated cell sorting (FACS). Results: Fluorecence microscopy and reverse transcription-PCR demonstrated that GFP, under the control of the human ubiquitin C promoter, was stably maintained and expressed in diverse organs over several generations. Immunophenotyping of blood samples by flow cytometry confirmed that the immunodeficient features of the parental rat strain, HsdHan™: rnu/rnu, were retained in the GFP nude rat. Both the murine cell line and human GBM biopsies engrafted, and stromal cell populations were isolated from dissociated xenografts by FACS to > 95% purity. Conclusions: A GFP transgene was stably introduced into a nude rat background in which human and murine cancer cells successfully engrafted. This animal strain provides a novel in vivo system for detailed cellular and molecular characterization of tumor-stroma interactions

    TMPRSS2-ERG Expression Predicts Prostate Cancer Survival and Associates with Stromal Biomarkers

    Get PDF
    The TMPRSS2-ERG gene fusion is found in approximately half of all prostate cancers. The functional and prognostic significance of TMPRSS2-ERG is, however, not fully understood. Based on a historical watchful waiting cohort, an association between TMPRSS2-ERG, evaluated as positive immune staining, and shorter survival of prostate cancer patients was identified. Expression of ERG was also associated with clinical markers such as advanced tumor stage, high Gleason score, presence of metastasis and prognostic tumor cell markers such as high Ki67, pEGFR and pAkt. Novel associations between TMPRSS2-ERG and alterations in the tumor stroma, for example, increased vascular density, hyaluronan and PDGFR beta and decreased Caveolin-1, all known to be associated with an aggressive disease, were found. The present study suggests that the TMPRSS2-ERG fusion gene is associated with a more aggressive prostate cancer phenotype, supported by changes in the tumor stroma
    corecore