9 research outputs found

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure

    Strontium, oxygen, and carbon isotope variation in modern human dental enamel

    No full text
    Objectives: Isotopic analyses using human dental enamel provide information on the mobility and diet of individuals in forensic and archeological studies. Thus far, no study has systematically examined intraindividual coupled strontium (Sr), oxygen (O), and carbon (C) isotope variation in human enamel or the effect that caries have on the isotopic integrity of the enamel. The inadequate quantification of isotopic variation affects interpretations and may constrain sample selection of elements affected by caries. This study aims to quantify the intraindividual isotopic variation and provides recommendations for enamel sampling methods. Material and Methods: This study presents the first systematic results on intraindividual variation in Sr–O–C isotope composition and Sr concentration in modern human dental enamel of third molars (affected and unaffected by caries). A multiloci sampling approach (n = 6–20) was used to analyze surface and inner enamel, employing thermal ionization mass spectrometry (TIMS) and isotope ratio mass spectrometry (IRMS). Third molars were analyzed from 47 individuals from the Netherlands, Iceland, the United States, the Caribbean, Colombia, Somalia, and South Africa. Results: Intradental isotopic variation in modern Dutch dental elements was recorded for Sr, O, and C and exceeded the variation introduced by the analytical error. Single loci and bulk sampling approaches of third molars established that a single analysis is only representative of the bulk Sr isotope composition in 60% of the elements analyzed. Dental elements affected by caries showed twice the variation seen in unaffected dental elements. Caries did not consistently incorporate the isotopic composition of the geographical environment in which they developed. Discussion: The isotopic variability recorded in unaffected inner enamel indicates that variations greater than 0.000200 for 87Sr/86Sr and larger than 2‰ for δ18O and δ13C are required to demonstrate changes in modern Dutch human diet or geographic location.Management Suppor
    corecore