247 research outputs found
Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands
Signy Island has experienced a dramatic increase in fur seal numbers over recent decades, which has led to the devastation of lowland terrestrial vegetation, with the eradication of moss turfs and carpets being the most prominent feature. Here we demonstrate that fur seals also affect the other major component of this region’s typical cryptogamic vegetation, the lichens, although with a lower decrease in variability and abundance than for bryophytes. Classification (UPGMA) and ordination (Principal Coordinate Analysis) of vegetation data highlight differences in composition and abundance of lichen communities between areas invaded by fur seals and contiguous areas protected from these animals. Multivariate analysis relating lichen communities to environmental parameters, including animal abundance and soil chemistry (Canonical Correspondence Analysis), suggests that fur seal trampling results in the destruction of muscicolous-terricolous lichens, including several cosmopolitan and bipolar fruticose species. In addition, animal excretion favours an increase in nitrophilous crustose species, a group which typically characterizes areas influenced by seabirds and includes several Antarctic endemics. The potential effect of such animal-driven changes in vegetation on the fragile terrestrial ecosystem (e.g. through modification of the ground surface temperature) confirms the importance of indirect environmental processes in Antarctica
Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors
Use of pigeons as bioindicators of air pollution from heavy metals at Rabat-Salé (Morocco)
Lichen deterioration of asbestos and asbestiform minerals of serpentinite rocks in Western Alps
A dataset from the Cryptogamia-Lichenes section of the Herbarium Universitatis Taurinensis (TO)
The influence of structural organization of epilithic and endolithic lichens on limestone weathering
Hyphal penetration, mineral dissolution and neoformation at the lichen–rock interface have been widely characterized by microscopic and spectroscopic studies, and considered as proxies of lichen deterioration of stone substrates. However, these phenomena have not been clearly related to experimental data on physical properties related to stone durability, and the physical consequences of lichen removal from stone surfaces have also been overlooked. In this study, we combine microscopic and spectroscopic characterization of the structural organization of epi- and endolithic lichens (Caloplaca marina (Wedd.) Du Rietz, Caloplaca ochracea (Schaer.) Flagey, Bagliettoa baldensis (A.Massal.) Vězda, Porina linearis (Leight.) Zahlbr., Verrucaria nigrescens Pers.) at the interface with limestones of interest for Cultural Heritage (Portland Limestone, Botticino Limestone), with analysis of rock properties (water absorption, surface hardness) relevant for durability, before and after the removal or scraping of lichen thalli. Observations using reflected-light and electron microscopy, and Raman analyses, showed lichen–limestone stratified interfaces, differing in the presence/absence and depth of lichen anatomical layers (lithocortex, photobiont layer, pervasive and sparse hyphal penetration component) depending on species and lithology. Specific structural organizations of lichen–rock interface were found to be associated with differential patterns of water absorption increase, evaluated by Karsten tube, in comparison with surfaces with microbial biofilms only, even more pronounced after the removal or scraping of the upper structural layers. Equotip measurements on surfaces bearing intact thalli showed lower hardness in comparison with control surfaces. By contrast, after the removal or scraping procedures, Equotip values were similar to or higher than those of controls, suggesting that the increasing open porosity may be related to a biogenic hardening process. Such counterposed patterns of porosity increase and hardening need to be considered when models relating lichen occurrence on limestones and biogeomorphological surface evolution are proposed, and to evaluate the consequences of lichen removal from stone-built cultural heritage
Site factors determining epiphytic lichen distribution in a dieback-affected spruce-fir forest on Whiteface Mountain, New York: stemflow chemistry
Epiphytic lichen diversity in a dieback-affected forest of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.) on Whiteface Mountain, New York, U.S.A., was higher on dead compared with living trees and on fir compared with spruce. Diversity differed more between living and dead spruce than between living and dead fir. Cover of all lichen species that occurred on more than 50% of the sample trees, except for two species, decreased with increasing mean concentration of NO3– in stemflow. Concentrations of NO3– were higher on living spruce compared with dead spruce and with living and dead fir. The negative correlations between lichen cover and NO3– concentration may reflect either a decrease of lichen abundance caused by toxic effects of higher NO3– concentrations or a removal of NO3– from stemflow by epiphytic lichens. Experimental exposure of Hypogymnia physodes to NaNO3 reduced chlorophyll concentrations. This result, together with estimations of lichen and needle biomass, indicates that a dependence of lichen cover on NO3– concentrations in stemflow may be the cause for the negative correlations. The sulphur concentration in stemflow did not affect lichen abundance on Whiteface Mountain. The manganese concentration in stemflow may have an effect on single species
- …
