96 research outputs found

    Modeling Individual Cyclic Variation in Human Behavior

    Full text link
    Cycles are fundamental to human health and behavior. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present CyHMMs, a cyclic hidden Markov model method for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to model variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets -- of menstrual cycle symptoms and physical activity tracking data -- yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.Comment: Accepted at WWW 201

    Choosing the Right Weights: Balancing Value, Strategy, and Noise in Recommender Systems

    Full text link
    Many recommender systems are based on optimizing a linear weighting of different user behaviors, such as clicks, likes, shares, etc. Though the choice of weights can have a significant impact, there is little formal study or guidance on how to choose them. We analyze the optimal choice of weights from the perspectives of both users and content producers who strategically respond to the weights. We consider three aspects of user behavior: value-faithfulness (how well a behavior indicates whether the user values the content), strategy-robustness (how hard it is for producers to manipulate the behavior), and noisiness (how much estimation error there is in predicting the behavior). Our theoretical results show that for users, upweighting more value-faithful and less noisy behaviors leads to higher utility, while for producers, upweighting more value-faithful and strategy-robust behaviors leads to higher welfare (and the impact of noise is non-monotonic). Finally, we discuss how our results can help system designers select weights in practice

    Quantifying disparities in intimate partner violence: a machine learning method to correct for underreporting

    Full text link
    Estimating the prevalence of a medical condition, or the proportion of the population in which it occurs, is a fundamental problem in healthcare and public health. Accurate estimates of the relative prevalence across groups -- capturing, for example, that a condition affects women more frequently than men -- facilitate effective and equitable health policy which prioritizes groups who are disproportionately affected by a condition. However, it is difficult to estimate relative prevalence when a medical condition is underreported. In this work, we provide a method for accurately estimating the relative prevalence of underreported medical conditions, building upon the positive unlabeled learning framework. We show that under the commonly made covariate shift assumption -- i.e., that the probability of having a disease conditional on symptoms remains constant across groups -- we can recover the relative prevalence, even without restrictive assumptions commonly made in positive unlabeled learning and even if it is impossible to recover the absolute prevalence. We conduct experiments on synthetic and real health data which demonstrate our method's ability to recover the relative prevalence more accurately than do baselines, and demonstrate the method's robustness to plausible violations of the covariate shift assumption. We conclude by illustrating the applicability of our method to case studies of intimate partner violence and hate speech

    A Bayesian Spatial Model to Correct Under-Reporting in Urban Crowdsourcing

    Full text link
    Decision-makers often observe the occurrence of events through a reporting process. City governments, for example, rely on resident reports to find and then resolve urban infrastructural problems such as fallen street trees, flooded basements, or rat infestations. Without additional assumptions, there is no way to distinguish events that occur but are not reported from events that truly did not occur--a fundamental problem in settings with positive-unlabeled data. Because disparities in reporting rates correlate with resident demographics, addressing incidents only on the basis of reports leads to systematic neglect in neighborhoods that are less likely to report events. We show how to overcome this challenge by leveraging the fact that events are spatially correlated. Our framework uses a Bayesian spatial latent variable model to infer event occurrence probabilities and applies it to storm-induced flooding reports in New York City, further pooling results across multiple storms. We show that a model accounting for under-reporting and spatial correlation predicts future reports more accurately than other models, and further induces a more equitable set of inspections: its allocations better reflect the population and provide equitable service to non-white, less traditionally educated, and lower-income residents. This finding reflects heterogeneous reporting behavior learned by the model: reporting rates are higher in Census tracts with higher populations, proportions of white residents, and proportions of owner-occupied households. Our work lays the groundwork for more equitable proactive government services, even with disparate reporting behavior.Comment: To appear in the 38th Annual AAAI Conference on Artificial Intelligence (AAAI-24
    • …
    corecore