705 research outputs found

    Age and environment affect constitutive immune function in Red Knots (Calidris canutus)

    Get PDF
    We studied subspecies, age and environmental effects on constitutive immune function (natural antibody and complement titres, haptoglobin activity and leukocyte concentrations) in Red Knots (Calidris canutus). We compared C. c. islandica and C. c. canutus in the Wadden Sea and found no difference in immune function between subspecies. However, C. c. canutus on their wintering grounds in Banc d’Arguin had higher natural antibody and lower complement levels than C. c. canutus or C. c. islandica in the Wadden Sea. This suggests that immune function is determined more by the surrounding environment than by subspecies. We also compared age classes in the Wadden Sea and found that first year birds had significantly lower natural antibody levels than adults, but that second year birds no longer differed from adults. Finally, we examined the interaction of age and environment in Banc d’Arguin. We found that first year birds (but not adults) in a low quality habitat had higher leukocyte concentrations than first year birds or adults in a high quality habitat. Differences in available resources and defence needs between environments, and differences among individuals differentially distributed between sites, are likely important contributors to the variation in immune function we report. Future studies, which examine these factors on wild birds, will be important for our understanding of how animals function in their natural environment.

    Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity

    Get PDF
    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated

    Basal metabolic rate declines during long-distance migratory flight in great knots

    Get PDF
    Great Knots (Calidris tenuirostris) make one of the longest migratory flights in the avian world, flying almost 5500 km from Australia to China during northward migration. We measured basal metabolic rate (BMR) and body composition in birds before and after this flight and found that BMR decreased 42%. The mass-specific BMR based on lean mass decreased 33%. We also starved a group of pre-migratory Great Knots in captivity to determine whether they showed the same reduction in BMR without having undergone the hard work of flight. The captive birds showed a similar range and reduction of BMR values as the wild birds. Exponents of relationships between BMR and body mass in different comparisons were high, indicating large changes in BMR as a function of body mass. Analysis of the body composition of ten wild and three captive birds found that the flight muscle mass and intestine mass positively correlated with BMR
    corecore