10 research outputs found
Two Independent Mushroom Body Output Circuits Retrieve the Six Discrete Components of Drosophila Aversive Memory
SummaryUnderstanding how the various memory components are encoded and how they interact to guide behavior requires knowledge of the underlying neural circuits. Currently, aversive olfactory memory in Drosophila is behaviorally subdivided into four discrete phases. Among these, short- and long-term memories rely, respectively, on the γ and α/β Kenyon cells (KCs), two distinct subsets of the ∼2,000 neurons in the mushroom body (MB). Whereas V2 efferent neurons retrieve memory from α/β KCs, the neurons that retrieve short-term memory are unknown. We identified a specific pair of MB efferent neurons, named M6, that retrieve memory from γ KCs. Moreover, our network analysis revealed that six discrete memory phases actually exist, three of which have been conflated in the past. At each time point, two distinct memory components separately recruit either V2 or M6 output pathways. Memory retrieval thus features a dramatic convergence from KCs to MB efferent neurons
Recommended from our members
Communication from Learned to Innate Olfactory Processing Centers Is Required for Memory Retrieval in Drosophila.
The behavioral response to a sensory stimulus may depend on both learned and innate neuronal representations. How these circuits interact to produce appropriate behavior is unknown. In Drosophila, the lateral horn (LH) and mushroom body (MB) are thought to mediate innate and learned olfactory behavior, respectively, although LH function has not been tested directly. Here we identify two LH cell types (PD2a1 and PD2b1) that receive input from an MB output neuron required for recall of aversive olfactory memories. These neurons are required for aversive memory retrieval and modulated by training. Connectomics data demonstrate that PD2a1 and PD2b1 neurons also receive direct input from food odor-encoding neurons. Consistent with this, PD2a1 and PD2b1 are also necessary for unlearned attraction to some odors, indicating that these neurons have a dual behavioral role. This provides a circuit mechanism by which learned and innate olfactory information can interact in identified neurons to produce appropriate behavior. VIDEO ABSTRACT.This work was supported by MRC LMB graduate studentships and Boehringer Ingelheim Fonds PhD fellowships (to M.-J.D. and A.S.B.) and a Janelia graduate research fellowship (to M.-J.D.), ERC starting (211089) and consolidator (649111) grants and core support from the MRC (MC-U105188491) (to G.S.X.E.J.), Agence Nationale de la Recherche funding of the MemoNetworks and MemoMap projects (to P.-Y.P. and T.P.) and the Labex Memolife PhD fellowship (to G.B.-G.), the Howard Hughes Medical Institute (to A.W. and G.M.R.), a Wellcome Trust collaborative award (203261/Z/16/Z to G.S.X.E.J., D.B., and G.M.R.), and a Cambridge Neuroscience-PSL collaborative grant supported by the Embassy of France in London (to G.S.X.E.J.). This work was also supported by the HHMI Janelia Visiting Scientist Program
Propriétés mécaniques de la myosine II in vitro: de la molécule unique aux effets collectifs.
Muscle fibres and hair bundles of the mechanosensitive hair cells from the vertebrates' inner ear both share the ability to oscillate spontaneously, under conditions where, at molecular level, groups of molecular motors operate near their stall force and are opposed an elastic restoring force.We have built an experimental setup to mimic in vitro such a configuration. We observed that an assembly of skeletal muscle myosin II, consuming ATP while interacting with an actin filament and submitted to an elastic restoring force exerted by an optical trap, is a minimal system able to exhibit spontaneous oscillations. The force-velocity relation of this system can show a non-monotonous behaviour, due to the motors' activity. This property provides a mechanism to interpret the spontaneous oscillations, as suggested by previous theoretical studies. Preliminary experiments at single molecule level also indicate that the stiffness of an acto-myosin crossbridge might depend on the tension within the actin filament. This property could explain the discrepancy between values of stiffness measured in vitro and estimated from experiments on whole muscle fibres.Les fibres musculaires et les touffes ciliaires mécanosensibles de l'oreille interne des vertébrés sont deux systèmes complexes capables de développer une activité mécanique spontanément oscillatoire, dans des conditions où, au niveau moléculaire, des groupes de moteurs moléculaires opèrent au voisinage de leur force d'arrêt et sont soumis à une force de rappel élastique.Nous avons construit un dispositif reproduisant in vitro une configuration semblable. Nous avons observé qu'une assemblée de myosines II musculaires, consommant de l'ATP en interagissant avec un filament d'actine, et soumise à une force de rappel élastique exercée par une pince optique, est un système minimal capable d'osciller spontanément. La relation force-vitesse du système présente un comportement non-monotone lié à l'activité des moteurs. Cette propriété fournit un mécanisme pour interpréter les oscillations spontanées, comme il l'a été suggéré par différentes études théoriques antérieures.Par ailleurs, des expériences préliminaires à l'échelle de la molécule individuelle indiquent que la raideur de l'accrochage actine-myosine II pourrait dépendre de la tension imposée au filament d'actine. Cette propriété pourrait expliquer les écarts entre les raideurs mesurées in vitro et estimées à partir d'expériences sur les fibres musculaires
Two Pairs of Mushroom Body Efferent Neurons Are Required for Appetitive Long-Term Memory Retrieval in Drosophila
One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs), prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM). Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM) retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing
Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation.
During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce
Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila
Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.publishe