4 research outputs found

    Dielectric-Filled Reentrant Cavity Resonator as a Low-Intensity Proton Beam Diagnostic

    No full text
    Measurement of the proton beam current (0.1–40 nA) at the medical treatment facility PROSCAN at the Paul Scherrer Institut (PSI) is performed with ionization chambers. To mitigate the scattering issues and to preserve the quality of the beam delivered to the patients, a non-interceptive monitor based on the principle of a reentrant cavity resonator has been built. The resonator with a fundamental resonance frequency of 145.7 MHz was matched to the second harmonic of the pulse repetition rate (72.85 MHz) of the beam extracted from the cyclotron. This was realized with the help of ANSYS HFSS (High Frequency Structural Simulator) for network analysis. Both, the pickup position and dielectric thickness were optimized. The prototype was characterized with a stand-alone test bench. There is good agreement between the simulated and measured parameters. The observed deviation in the resonance frequency is attributed to the frequency dependent dielectric loss tangent. Hence, the dielectric had to be resized to tune the resonator to the design resonance frequency. The measured sensitivity performances were in agreement with the expectations. We conclude that the dielectric reentrant cavity resonator is a promising candidate for measuring low proton beam currents in a non-destructive manner

    The PSI meson target facility and its upgrade IMPACT-HIMB

    No full text
    The high intensity proton accelerator complex (HIPA) at the Paul Scherrer Institute (PSI) delivers a 590 MeV CW proton beam with currents up to 2.4 mA (1.4 MW). Besides two spallation targets for thermal/cold neutrons (SINQ) and for ultracold neutrons (UCN), the beam feeds two meson production targets Target M and Target E. The targets consist of graphite wheels of effective thickness 5 mm (M) and 40/60 mm (E). The target stations M and E are of quite different design; however, both of them rotate at 1 Hz to dissipate the heat (20 kW/mA for the 40 mm target E) efficiently. Recent progress was made by a new type of bearings and a new target geometry able to increase the rate of surface muons by up to 50 %. This is also foreseen for the upgrade of the target station M within the High Intensity Muon Beam (HIMB) initiative aiming to increase the surface muons available for experiment by two orders of magnitude. HIMB is part of IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technology), an application for the Swiss Roadmap of Research Infrastructure
    corecore