71 research outputs found

    Herschel Search for O_2 toward the Orion Bar

    Get PDF
    We report the results of a search for molecular oxygen (O_2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the H II region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O_2 NJ = 33-12 transition at 487 GHz and the 5_(4)-3_(4) transition at 774 GHz using the Heterodyne Instrument for the Far-Infrared on the Herschel Space Observatory. Neither line was detected, but the 3σ upper limits established here translate to a total line-of-sight O2 column density <1.5 × 10^(16) cm^(–2) for an emitting region whose temperature is between 30 K and 250 K, or <1 × 10^(16) cm^(–2) if the O_2 emitting region is primarily at a temperature of ≲100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O_2 column density is less than 4 × 10^(15) cm^(–2), a value that is below, and possibly well below, model predictions for gas with a density of 10^(4)-10^(5) cm^(–3) exposed to a far-ultraviolet flux 10^4 times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on A V of the Bar is less than required for O_2 to reach peak abundance; (3) the O_2 emission arises within dense clumps with a small beam filling factor; or (4) the face-on depth into the Bar where O_2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams

    Herschel HIFI observations of O2_2 toward Orion: special conditions for shock enhanced emission

    Get PDF
    We report observations of molecular oxygen (O2_2) rotational transitions at 487 GHz, 774 GHz, and 1121 GHz toward Orion Peak A. The O2 lines at 487 GHz and 774 GHz are detected at velocities of 10-12 km/s with line widths 3 km/s; however, the transition at 1121 GHz is not detected. The observed line characteristics, combined with the results of earlier observations, suggest that the region responsible for the O2_2 emission is 9" (6e16 cm) in size, and is located close to the H2 Peak 1position (where vibrationally-excited H2_2 emission peaks), and not at Peak A, 23" away. The peak O2 column density is 1.1e18/cm2. The line velocity is close to that of 621 GHz water maser emission found in this portion of the Orion Molecular Cloud, and having a shock with velocity vector lying nearly in the plane of the sky is consistent with producing maximum maser gain along the line-of-sight. The enhanced O2_2 abundance compared to that generally found in dense interstellar clouds can be explained by passage of a low-velocity C-shock through a clump with preshock density 2e4/cm3, if a reasonable flux of UV radiation is present. The postshock O2_2 can explain the emission from the source if its line of sight dimension is ~10 times larger than its size on the plane of the sky. The special geometry and conditions required may explain why O2_2 emission has not been detected in the cores of other massive star-forming molecular clouds.Comment: 28 pages, 13 figure

    Herschel Search for O2 Toward the Orion Bar

    Get PDF
    We report the results of a search for molecular oxygen (O2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the HII region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O2 N_J = 3_3 - 1_2 transition at 487 GHz and the 5_4 - 3_4 transition at 774 GHz using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory. Neither line was detected, but the 3sigma upper limits established here translate to a total line-of-sight O2 column density < 1.5 10^16 cm^-2 for an emitting region whose temperature is between 30K and 250 K, or < 1 10^16 cm^-2 if the O2 emitting region is primarily at a temperature of ~< 100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O2 column density is less than 4 10^15 cm^-2, a value that is below, and possibly well below, model predictions for gas with a density of 10^4 - 10^5 cm^-3 exposed to a far ultraviolet flux 10^4 times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if: (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on Av of the Bar is less than required for O2 to reach peak abundance; (3) the O2 emission arises within dense clumps with a small beam filling factor; or, (4) the face-on depth into the Bar where O2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams.Comment: 30 pages, 7 figures, 1 table. Accepted for publication in Ap

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Rotational excitation of H3O+ cations by para-H2: improved collisional data at low temperatures

    Get PDF
    Free-access link :https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3015/6406505?guestAccessKey=80b41295-5352-4131-b205-23069ebc314cYu9hD1fx2MVcUv6Uxu7LQ==International audienceThe hydronium cation plays a crucial role in interstellar oxygen and water chemistry. While its spectroscopy was extensively investigated earlier, the collisional excitation of H3O+ is not well studied yet. In this work we present state-to-state collisional data for rotational de-excitation of both ortho- and para-H3O+ due to para-H2 impact. The cross sections are calculated within the close-coupling formalism using our recent, highly accurate rigid-rotor potential energy surface for this collision system. The corresponding thermal rate coefficients are calculated up to 100 K. For para-H3O+ the lowest 20 rotation-inversion states were considered in the calculations, while for ortho-H3O+ the lowest 11 states are involved (up to j ≤ 5), so all levels with rotational energy below 420 K (292 cm−1) are studied. In order to analyse the impact of the new collisional rates on the excitation of H3O+ in astrophysical environments radiative transfer calculations are also provided. The most relevant emission lines from an astrophysical point of view are studied, taking into account the transitions at 307, 365, 389 and 396 GHz. We show that our new collisional data have a non-negligible impact (from a few percents up to about a factor of 3) on the brightness and excitation temperatures of H3O+, justifying the revision of the physical conditions in the appropriate astrophysical observations. The calculated rate coefficients allow one to recalculate the column density of hydronium in interstellar clouds, which can lead to a better understanding of interstellar water and oxygen chemistry
    corecore