2,335 research outputs found

    An implicit high order discontinuous Galerkin level set method for two-phase flow problems

    Get PDF
    International audienceAn implicit high order time (BDF) and polynomial degree discontinuous Galerkin (DG) level set method is presented in this talk. The major advantage of this new approach is an accurate mass conservation during the convection of the level set function, thanks to the implicit method. Numerical experiments are presented for the Zalesak and the Leveque test cases. The convergence rates versus time and space are investigated for both BDF and DG high orders. The capture of the zero level set interface is then improved by using an auto-adaptive mesh procedure. The problem is approximated by using the discontinuous Galerkin method for both the level set function, the velocity and the pressure fields

    Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks

    Full text link
    Top quarks, produced in large numbers at the Large Hadron Collider, have a complex detector signature and require special reconstruction techniques. The most common decay mode, the "all-jet" channel, results in a 6-jet final state which is particularly difficult to reconstruct in pppp collisions due to the large number of permutations possible. We present a novel approach to this class of problem, based on neural networks using a generalized attention mechanism, that we call Symmetry Preserving Attention Networks (SPA-Net). We train one such network to identify the decay products of each top quark unambiguously and without combinatorial explosion as an example of the power of this technique.This approach significantly outperforms existing state-of-the-art methods, correctly assigning all jets in 93.093.0% of 66-jet, 87.887.8% of 77-jet, and 82.682.6% of 8\geq 8-jet events respectively.Comment: 8pages, submitted to PRL, revised version with updated result

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    MEASUREMENT OF RHEOLOGICAL CHARACTERISTICS FOR 3D PRINTED MORTAR

    Full text link
    Additive manufacturing has found widespread application across various industrial sectors including house construction, which presents significant potential. Nonetheless, the utilization of materials for 3D-printed construction encounters challenges due to their unique properties, particularly their setting time. Hence, a thorough investigation into the rheology of 3D-printed mortar becomes imperative. The material employed in this process must exhibit a delicate balance, being sufficiently fluid to facilitate smooth transportation through the pump pipe while also possessing the requisite viscosity to support multiple layers. Furthermore, the 3D printed filament must feature a smooth surface and continuity to ensure optimal cohesion between layers. To assess these properties, three key criteria are established: pumpability, extrudability, and buildability. This study aims to elucidate the methodology for measuring these characteristics. Two distinct testing methods will be employed: simple standard tests for construction materials providing an estimation of rheological characteristics and rheometer tests ensuring precise and reliable measurements. The primary objective lies in identifying a suitable test methodology for assessing the rheological traits of materials on the construction site. Various tests, including the flow table test, fall cone test, V funnel test, and pistol test, will be explored to determine the optimal approach for the 3D printing process. Experimental assessments conducted utilizing the RheoCAD rheometer are indispensable for comprehending material behaviors across diverse testing conditions. Furthermore, a comparative analysis of the mechanical strength between 3D printed samples and casted samples will be presented. This comparative assessment aims to provide valuable insights into the structural integrity and performance characteristics of 3D-printed constructions relative to conventional casting techniques.Impression 3D de BEtons par eXTRUSion11. Sustainable cities and communitie

    Bilateral renal artery stenosis and epidermal nevus syndrome in a child

    Get PDF
    Epidermal nevus syndrome is a rare congenital sporadic neuro-ectodermic disorder, characterized by the presence of epidermal nevi in association with various developmental abnormalities of the skin, eyes, nervous, skeletal, cardiovascular and urogenital systems. We describe a 5-year-old boy with conjunctival lipodermoid, cervical and facial sebaceous nevi who presented at 3 years of age with hypertension due to bilateral renal artery stenosis together with multiple vascular anomalies (aorta, celiac trunk, superior mesenteric artery) as shown by magnetic resonance angiography. Systemic arterial hypertension was difficult to control despite combined anti-hypertensive drugs and the surgical repair of the aortic coarctation

    A Rapid, Cost-Effective Method of Assembly and Purification of Synthetic DNA Probes >100 bp

    Get PDF
    Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable strands (50 bp) with a common strand sequence (51 bp) in a single pool using Fast-Link DNA ligase to produce 101 bp targets (10 min). Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion column (<5 min). We then compared full-length product yield of crude and purified samples using HPLC analysis; the results of which clearly show our method yields three-quarters that of the crude sample (50% higher than by gel-extraction). And while we substantially reduced the amount of unligated product with our filtration process, higher purity and yield, with an increase in number of stands per reaction (>12) could be achieved with further optimization. Moreover, for large-scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Key features of palliative care service delivery to Indigenous peoples in Australia, New Zealand, Canada and the United States: A comprehensive review

    Get PDF
    Background: Indigenous peoples in developed countries have reduced life expectancies, particularly from chronic diseases. The lack of access to and take up of palliative care services of Indigenous peoples is an ongoing concern. Objectives: To examine and learn from published studies on provision of culturally safe palliative care service delivery to Indigenous people in Australia, New Zealand (NZ), Canada and the United States of America (USA); and to compare Indigenous peoples’ preferences, needs, opportunities and barriers to palliative care. Methods: A comprehensive search of multiple databases was undertaken. Articles were included if they were published in English from 2000 onwards and related to palliative care service delivery for Indigenous populations; papers could use quantitative or qualitative approaches. Common themes were identified using thematic synthesis. Studies were evaluated using Daly’s hierarchy of evidence-for-practice in qualitative research. Results: Of 522 articles screened, 39 were eligible for inclusion. Despite diversity in Indigenous peoples’ experiences across countries, some commonalities were noted in the preferences for palliative care of Indigenous people: to die close to or at home; involvement of family; and the integration of cultural practices. Barriers identified included inaccessibility, affordability, lack of awareness of services, perceptions of palliative care, and inappropriate services. Identified models attempted to address these gaps by adopting the following strategies: community engagement and ownership; flexibility in approach; continuing education and training; a whole-of-service approach; and local partnerships among multiple agencies. Better engagement with Indigenous clients, an increase in number of palliative care patients, improved outcomes, and understanding about palliative care by patients and their families were identified as positive achievements. Conclusions: The results provide a comprehensive overview of identified effective practices with regards to palliative care delivered to Indigenous populations to guide future program developments in this field. Further research is required to explore the palliative care needs and experiences of Indigenous people living in urban areas
    corecore