60 research outputs found
On a Bubble algorithm for the cubic Nonlinear Schr{\"o}dinger equation
Based on very recent and promising ideas, stemming from the use of bubbles,
we discuss an algorithm for the numerical simulation of the cubic nonlinear
Schr{\"o}dinger equation with harmonic potential (cNLS) in any dimension, that
could easily be extended to other polynomial nonlinearities. This algorithm
consists in discretizing the initial function as a sum of modulated complex
gaussian functions (the bubbles), each one having its own set of parameters,
and then updating the parameters according to cNLS. Numerically, we solve
exactly the linear part of the equation and use the Dirac-Frenkel-MacLachlan
principle to approximate the nonlinear part. We then obtain a grid free
algorithm in any dimension whose efficiency compared with spectral methods is
illustrated by numerical examples
Plasmodium falciparum exported protein PFE60 influences Maurer's clefts architecture and virulence complex composition
Plasmodium falciparum, the most lethal malaria parasite species for humans, vastly remodels the mature erythrocyte host cell upon invasion for its own survival. Maurer's clefts (MC) are membraneous structures established by the parasite in the cytoplasm of infected cells. These organelles are deemed essential for trafficking of virulence complex proteins. The display of the major virulence protein, P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of the infected red blood cell and the subsequent cytoadhesion of infected cells in the microvasculature of vital organs is the key mechanism that leads to the pathology associated with malaria infection. In a previous study we established that PFE60 (PIESP2) is one of the protein components of this complex. Here we demonstrate that PFE60 plays a role in MC lamella segmentation since in the absence of the protein, infected cells display a higher number of stacked MC compared with wild type infected red blood cells. Also, another exported parasite protein (Pf332) failed to localise correctly to the MC in cells lacking PFE60. Furthermore - unlike all other described resident MC membrane proteins - PFE60 does not require its transmembrane regions to be targeted to the organelle. We also provide further evidence that PFE60 is not a red blood cell surface antigen.This work was supported by the Australian Research Council (DP1093518 and DP0878953)
Availability of Antimalarial Drugs and Evaluation of the Attitude and Practices for the Treatment of Uncomplicated Malaria in Bangui, Central African Republic
National malaria management policy is based upon the availability of effective and affordable antimalarial drugs. This study was undertaken to evaluate the quality of the treatment of uncomplicated malaria cases in Bangui, an area with multidrug-resistant parasites, at a time preceding implementation of a new therapeutic policy relying on the artemisinin derivative combined treatment artemether-lumefantrine. A cross-sectional study was carried out in Bangui city to assess availability of antimalarial drugs and the performances of health workers in the management of uncomplicated malaria. Availability of drugs was recorded in all drugs wholesalers (n = 3), all pharmacies in health facilities (n = 14), private drugstores (n = 15), and in 60 non-official drug shops randomly chosen in the city. Despite a limited efficacy at the time of the survey, chloroquine remained widely available in the official and nonofficial markets. Artemisinin derivatives used in monotherapy or in combination were commonly sold. In health care facilities, 93% of the uncomplicated malaria cases were treated in the absence of any laboratory confirmation and the officially recommended treatment, amodiaquine-sulfadoxine/pyrimethamine, was seldom prescribed. Thus, the national guidelines for the treatment of uncomplicated malaria are not followed by health professionals in Bangui. Its use should be implemented while a control of importation of drug has to be reinforced
Changes to the amino acid profile and proteome of the tropical freshwater microalga Chlorella sp. in response to copper stress
Contamination of freshwaters is increasing globally, with microalgae considered one of the most sensitive taxa to metal pollution. Here, we used 72 h bioassays to explore the biochemical effects of copper (Cu) on the amino acid (AA) profile and proteome of Chlorella sp. and advance our understanding of the molecular changes that occur in algal cells during exposure to environmentally realistic Cu concentrations. The Cu concentrations required to inhibit algal growth rate by 10% (EC10) and 50% (EC50) were 1.0 (0.7-1.2) mu g L-1 and 2.0 (1.9-2.4) mu g L-1, respectively. The AA profile of Chlorella sp. showed increases in glycine and decreases in isoleucine, leucine, valine, and arginine, with increasing Cu. Proteomic analysis revealed the modulation of several proteins involved in energy production pathways, including: photosynthesis, carbon fixation, glycolysis, and oxidative phosphorylation, which likely assists in meeting increased energy demands under Cu-stressed conditions. Copper exposure also caused up-regulation of cellular processes and signalling proteins, and the down-regulation of proteins related to ribosomal structure and protein translation. These changes in biomolecular pathways have direct effects on the AA profile and total protein content and provide an explanation for the observed changes in amino acid profile, cell growth and morphology. This study shows the complex mode of action of Cu on Chlorella under environmentally realistic Cu concentrations and highlights several potential biomarkers for future investigations
Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase
The mitochondrion of apicomplexan parasites is critical for parasite survival, although the full complement of proteins that localize to this organelle has not been defined. Here we undertake two independent approaches to elucidate the mitochondrial proteome of the apicomplexan Toxoplasma gondii. We identify approximately 400 mitochondrial proteins, many of which lack homologs in the animals that these parasites infect, and most of which are important for parasite growth. We demonstrate that one such protein, termed TgApiCox25, is an important component of the parasite cytochrome c oxidase (COX) complex. We identify numerous other apicomplexan-specific components of COX, and conclude that apicomplexan COX, and apicomplexan mitochondria more generally, differ substantially in their protein composition from the hosts they infect. Our study highlights the diversity that exists in mitochondrial proteomes across the eukaryotic domain of life, and provides a foundation for defining unique aspects of mitochondrial biology in an important phylum of parasites.This work was supported by a Discovery Grant and QEII fellowship from the
Australian Research Council (ARC DP110103144) to GvD
Recommended from our members
Extracellular Vesicles from Fusarium graminearum Contain Protein Effectors Expressed during Infection of Corn.
Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens. We separated EVs from Fgr and performed a proteomic analysis to determine if EVs carry proteins with potential roles in pathogenesis. We revealed that protein effectors, which are crucial for fungal virulence, were detected in EV preparations and some of them did not contain predicted secretion signals. Furthermore, a transcriptomic analysis of corn (Zea mays) plants infected by Fgr revealed that the genes of some of the effectors were highly expressed in vivo, suggesting that the Fgr EVs are a mechanism for the unconventional secretion of effectors and virulence factors. Our results expand the knowledge on fungal EVs in plant pathogenesis and cross-kingdom communication, and may contribute to the discovery of new antifungals
Proteomic identification of galectin-11 and 14 ligands from Haemonchus contortus
Haemonchus contortus is the most pathogenic nematode of small ruminants. Infection in sheep and goats results in anaemia that decreases animal productivity and can ultimately cause death. The involvement of ruminant-specific galectin-11 (LGALS-11) and galectin-14 (LGALS-14) has been postulated to play important roles in protective immune responses against parasitic infection; however, their ligands are unknown. In the current study, LGALS-11 and LGALS-14 ligands in H. contortus were identified from larval (L4) and adult parasitic stages extracts using immobilised LGALS-11 and LGALS-14 affinity column chromatography and mass spectrometry. Both LGALS-11 and LGALS-14 bound more putative protein targets in the adult stage of H. contortus (43 proteins) when compared to the larval stage (two proteins). Of the 43 proteins identified in the adult stage, 34 and 35 proteins were bound by LGALS-11 and LGALS-14, respectively, with 26 proteins binding to both galectins. Interestingly, hematophagous stage-specific sperm-coating protein and zinc metalloprotease (M13), which are known vaccine candidates, were identified as putative ligands of both LGALS-11 and LGALS- 14. The identification of glycoproteins of H. contortus by LGALS-11 and LGALS-14 provide new insights into host-parasite interactions and the potential for developing new interventions
On weakly turbulent solutions to the perturbed linear Harmonic oscillator
We introduce specific solutions to the linear harmonic oscillator, named bubbles. They form resonant families of invariant tori of the linear dynamics, with arbitrarily large Sobolev norms. We use these modulated bubbles of energy to construct a class of potentials which are real, smooth, time dependent and uniformly decaying to zero with respect to time, such that the corresponding perturbed quantum harmonic oscillator admits solutions which exhibit a logarithmic growth of Sobolev norms. The resonance mechanism is explicit in space variables and produces highly oscillatory solutions. We then give several recipes to construct similar examples using more specific tools based on the continuous resonant (CR) equation in dimension two
The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation
68 pages, 1 figureInternational audienceWe consider the cubic nonlinear Schrödinger (NLS) equation set on a two dimensional box of size with periodic boundary conditions. By taking the large box limit in the weakly nonlinear regime (characterized by smallness in the critical space), we derive a new equation set on that approximates the dynamics of the frequency modes. This nonlinear equation turns out to be Hamiltonian and enjoys interesting symmetries, such as its invariance under Fourier transform, as well as several families of explicit solutions. A large part of this work is devoted to a rigorous approximation result that allows to project the long-time dynamics of the limit equation into that of the cubic NLS equation on a box of finite size
- …