2,310 research outputs found

    Variational Monte-Carlo investigation of SU(NN) Heisenberg chains

    Full text link
    Motivated by recent experimental progress in the context of ultra-cold multi-color fermionic atoms in optical lattices, we have investigated the properties of the SU(NN) Heisenberg chain with totally antisymmetric irreducible representations, the effective model of Mott phases with m<Nm < N particles per site. These models have been studied for arbitrary NN and mm with non-abelian bosonization [I. Affleck, Nuclear Physics B 265, 409 (1986); 305, 582 (1988)], leading to predictions about the nature of the ground state (gapped or critical) in most but not all cases. Using exact diagonalization and variational Monte-Carlo based on Gutzwiller projected fermionic wave functions, we have been able to verify these predictions for a representative number of cases with N≤10N \leq 10 and m≤N/2m \leq N/2, and we have shown that the opening of a gap is associated to a spontaneous dimerization or trimerization depending on the value of m and N. We have also investigated the marginal cases where abelian bosonization did not lead to any prediction. In these cases, variational Monte-Carlo predicts that the ground state is critical with exponents consistent with conformal field theory.Comment: 9 pages, 10 figures, 3 table
    • …
    corecore