267 research outputs found
Observations of Ultra-High Energy Cosmic Rays
The status of measurements of the arrival directions, mass composition and
energy spectrum of cosmic rays above 3 x 10^18 eV (3 EeV) is reviewed using
reports presented at the 29th International Cosmic Ray Conference held in Pune,
India, in August 2005. The paper is based on a plenary talk given at the
TAUP2005 meeting in Zaragoza, 10 - 14 September 2005.Comment: 7 pages and two figure
Light Nuclei solving Auger puzzles. The Cen-A imprint
Ultra High Energy Cosmic Rays (UHECR) map at 60 EeV have been found recently
by AUGER group spreading anisotropy signatures in the sky. The result have been
interpreted as a manifestation of AGN sources ejecting protons at GZK edges
mostly from Super-galactic Plane. The result is surprising due to the absence
of much nearer Virgo cluster. Moreover, early GZK cut off in the spectra may be
better reconcile with light nuclei (than with protons). In addition a large
group (nearly a dozen) of events cluster suspiciously along Cen-A. Finally,
proton UHECR composition nature is in sharp disagreement with earlier AUGER
claim of a heavy nuclei dominance at 40 EeV. Therefore we interpret here the
signals as mostly UHECR light nuclei (He, Be, B, C, O), very possibly mostly
the lightest (He,Be) ones, ejected from nearest AGN Cen-A, UHECR smeared by
galactic magnetic fields, whose random vertical bending is overlapping with
super-galactic arm. The eventual AUGER misunderstanding took place because of
such a rare coincidence between the Super Galactic Plane (arm) and the smeared
(randomized) signals from Cen-A, bent orthogonally to the Galactic fields. Our
derivation verify the consistence of the random smearing angles for He, Be and
B, C, O, in reasonable agreement with the AUGER main group events around Cen-A.
Only few other rare events are spread elsewhere. The most collimated from Cen-A
are the lightest. The most spread the heavier. Consequently Cen-A is the best
candidate UHE neutrino tau observable by HEAT and AMIGA as enhanced AUGER array
at tens-hundred PeV energy. This model maybe soon tested by new events
clustering around the Cen-A and by composition imprint study.Comment: 4 pages, 5 figures
Probing Lorentz Invariance at EeV Energy
Pierre Auger experiment has detected at least a couple of ray events above
energy 60 EeV from the direction of the radio-galaxy Centaurus A. Assuming
those events are from Centaurus A, we have calculated the number of neutral
cosmic ray events from this source for small values of the degree of violation
in Lorentz invariance. Our results show that a comparison of our calculated
numbers of events with the observed number of events at EeV energy from the
direction of the source can probe extremely low value of the degree of this
violation.Comment: 8 pages,4 figure
Processing of the Signals from the Surface Detectors of the Pierre Auger Observatory
Abstract The detectors of the surface array of the Pierre Auger Observatory are water Cherenkov tanks. The signals from each tank are read out using three photomultipliers. The energy of the primary particle is inferred from signal densities and requires good linearity of the PMTs and a large dynamic range. The absolute time of arrival of the shower front at each tank is obtained from the Global Positioning System (GPS) with a resolution of about 10 ns, ensuring an accurate primary angular reconstruction. Additionally, it is intended to use the rise time and shape of the signals to constrain the nature of the primary particle: this sets further requirements on the signal processing. In this paper, the main features of the signal processing associated with the surface detector will be presented and its performance will be discussed in the context of the extraction of shower parameters
A Three-Point Cosmic Ray Anisotropy Method
The two-point angular correlation function is a traditional method used to
search for deviations from expectations of isotropy. In this paper we develop
and explore a statistically descriptive three-point method with the intended
application being the search for deviations from isotropy in the highest energy
cosmic rays. We compare the sensitivity of a two-point method and a
"shape-strength" method for a variety of Monte-Carlo simulated anisotropic
signals. Studies are done with anisotropic source signals diluted by an
isotropic background. Type I and II errors for rejecting the hypothesis of
isotropic cosmic ray arrival directions are evaluated for four different event
sample sizes: 27, 40, 60 and 80 events, consistent with near term data
expectations from the Pierre Auger Observatory. In all cases the ability to
reject the isotropic hypothesis improves with event size and with the fraction
of anisotropic signal. While ~40 event data sets should be sufficient for
reliable identification of anisotropy in cases of rather extreme (highly
anisotropic) data, much larger data sets are suggested for reliable
identification of more subtle anisotropies. The shape-strength method
consistently performs better than the two point method and can be easily
adapted to an arbitrary experimental exposure on the celestial sphere.Comment: Fixed PDF erro
Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory
We describe the experimental setup and the results of RAuger, a small
radio-antenna array, consisting of three fully autonomous and self-triggered
radio-detection stations, installed close to the center of the Surface Detector
(SD) of the Pierre Auger Observatory in Argentina. The setup has been designed
for the detection of the electric field strength of air showers initiated by
ultra-high energy cosmic rays, without using an auxiliary trigger from another
detection system. Installed in December 2006, RAuger was terminated in May 2010
after 65 registered coincidences with the SD. The sky map in local angular
coordinates (i.e., zenith and azimuth angles) of these events reveals a strong
azimuthal asymmetry which is in agreement with a mechanism dominated by a
geomagnetic emission process. The correlation between the electric field and
the energy of the primary cosmic ray is presented for the first time, in an
energy range covering two orders of magnitude between 0.1 EeV and 10 EeV. It is
demonstrated that this setup is relatively more sensitive to inclined showers,
with respect to the SD. In addition to these results, which underline the
potential of the radio-detection technique, important information about the
general behavior of self-triggering radio-detection systems has been obtained.
In particular, we will discuss radio self-triggering under varying local
electric-field conditions.Comment: accepted for publication in JINS
The energy production rate & the generation spectrum of UHECRs
We derive simple analytic expressions for the flux and spectrum of ultra-high
energy cosmic-rays (UHECRs) predicted in models where the CRs are protons
produced by extra-Galactic sources. For a power-law scaling of the CR
production rate with redshift and energy, d\dot{n} /dE\propto E^-\alpha
(1+z)^m, our results are accurate at high energy, E>10^18.7 eV, to better than
15%, providing a simple and straightforward method for inferring d\dot{n}/dE
from the observed flux at E. We show that current measurements of the UHECR
spectrum, including the latest Auger data, imply
E^2d\dot{n}/dE(z=0)=(0.45\pm0.15)(\alpha-1) 10^44 erg Mpc^-3 yr^-1 at E<10^19.5
eV with \alpha roughly confined to 2\lesseq\alpha<2.7. The uncertainty is
dominated by the systematic and statistic errors in the experimental
determination of individual CR event energy, (\Delta E/E)_{sys} (\Delta
E/E)_{stat} ~20%. At lower energy, d\dot{n}/dE is uncertain due to the unknown
Galactic contribution. Simple models in which \alpha\simeq 2 and the transition
from Galactic to extra-Galactic sources takes place at the "ankle", E ~10^19
eV, are consistent with the data. Models in which the transition occurs at
lower energies require a high degree of fine tuning and a steep spectrum,
\alpha\simeq 2.7, which is disfavored by the data. We point out that in the
absence of accurate composition measurements, the (all particle) energy
spectrum alone cannot be used to infer the detailed spectral shapes of the
Galactic and extra-Galactic contributions.Comment: 9 pages, 11 figures, minor revision
Prospects for GMRT to Observe Radio Waves from UHE Particles Interacting with the Moon
Ultra high energy (UHE) particles of cosmic origin impact the lunar regolith
and produce radio signals through Askaryan effect, signals that can be detected
by Earth based radio telescopes. We calculate the expected sensitivity for
observation of such events at the Giant Metrewave Radio Telescope (GMRT), both
for UHE cosmic rays (CR) and UHE neutrino interactions. We find that for 30
days of observation time a significant number of detectable events is expected
above eV for UHECR or neutrino fluxes close to the current limits.
Null detection over a period of 30 days will lower the experimental bounds on
UHE particle fluxes by magnitudes competitive to both present and future
experiments at the very highest energies.Comment: 21 pages, 9 figure
Cross-Correlation between UHECR Arrival Distribution and Large-Scale Structure
We investigate correlation between the arrival directions of
ultra-high-energy cosmic rays (UHECRs) and the large-scale structure (LSS) of
the Universe by using statistical quantities which can find the angular scale
of the correlation. The Infrared Astronomical Satellite Point Source Redshift
Survey (IRAS PSCz) catalog of galaxies is adopted for LSS. We find a positive
correlation of the highest energy events detected by the Pierre Auger
Observatory (PAO) with the IRAS galaxies inside within the angular
scale of . This positive correlation observed in the southern
sky implies that a significant fraction of the highest energy events comes from
nearby extragalactic objects. We also analyze the data of the Akeno Giant Air
Shower Array (AGASA) which observed the northern hemisphere, but the obvious
signals of positive correlation with the galaxy distribution are not found.
Since the exposure of the AGASA is smaller than the PAO, the cross-correlation
in the northern sky should be tested using a larger number of events detected
in the future. We also discuss the correlation using the all-sky combined data
sets of both the PAO and AGASA, and find a significant correlation within . These angular scales can constrain several models of intergalactic
magnetic field. These cross-correlation signals can be well reproduced by a
source model in which the distribution of UHECR sources is related to the IRAS
galaxies.Comment: 21 pages,7 figure
Effects of the galactic magnetic field upon large scale anisotropies of extragalactic Cosmic Rays
The large scale pattern in the arrival directions of extragalactic cosmic
rays that reach the Earth is different from that of the flux arriving to the
halo of the Galaxy as a result of the propagation through the galactic magnetic
field. Two different effects are relevant in this process: deflections of
trajectories and (de)acceleration by the electric field component due to the
galactic rotation. The deflection of the cosmic ray trajectories makes the flux
intensity arriving to the halo from some direction to appear reaching the Earth
from another direction. This applies to any intrinsic anisotropy in the
extragalactic distribution or, even in the absence of intrinsic anisotropies,
to the dipolar Compton-Getting anisotropy induced when the observer is moving
with respect to the cosmic rays rest frame. For an observer moving with the
solar system, cosmic rays traveling through far away regions of the Galaxy also
experience an electric force coming from the relative motion (due to the
rotation of the Galaxy) of the local system in which the field can be
considered as being purely magnetic. This produces small changes in the
particles momentum that can originate large scale anisotropies even for an
isotropic extragalactic flux.Comment: 11 pages, 4 figure
- …