31,414 research outputs found

    D-instantons, Strings and M-theory

    Full text link
    The R^4 terms in the effective action for M-theory compactified on a two-torus are motivated by combining one-loop results in type II superstring theories with the Sl(2,Z) duality symmetry. The conjectured expression reproduces precisely the tree-level and one-loop R^4 terms in the effective action of the type II string theories compactified on a circle, together with the expected infinite sum of instanton corrections. This conjecture implies that the R^4 terms in ten-dimensional string type II theories receive no perturbative corrections beyond one loop and there are also no non-perturbative corrections in the ten-dimensional IIA theory. Furthermore, the eleven-dimensional M-theory limit exists, in which there is an R^4 term that originates entirely from the one-loop contribution in the type IIA theory and is related by supersymmetry to the eleven-form C^{(3)}R^4. The generalization to compactification on T^3 as well as implications for non-renormalization theorems in D-string and D-particle interactions are briefly discussed.Comment: harvmac (b) 17 pages. v4: Some formulae corrected. Dimensions corrected for eleven-dimensional expression

    Atmospheric Calorimetry above 1019^{19} eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory

    Full text link
    The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a calorimeter to measure extensive air-showers created by particles of astrophysical origin. Some of these particles carry joules of energy. At these extreme energies, test beams are not available in the conventional sense. Yet understanding the energy response of the observatory is important. For example, the propagation distance of the highest energy cosmic-rays through the cosmic microwave background radiation (CMBR) is predicted to be strong function of energy. This paper will discuss recently reported results from the observatory and the use of calibrated pulsed UV laser "test-beams" that simulate the optical signatures of ultra-high energy cosmic rays. The status of the much larger 200,000 km3^3 companion detector planned for the northern hemisphere will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in High Energy Physic

    Production of the X(3872) at the Tevatron and the LHC

    Full text link
    We predict the differential cross sections for production of the X(3872) at the Tevatron and the Large Hadron Collider from both prompt QCD mechanisms and from decays of b hadrons. The prompt cross section is calculated using the NRQCD factorization formula. Simplifying assumptions are used to reduce the nonperturbative parameters to a single NRQCD matrix element that is determined from an estimate of the prompt cross section at the Tevatron. For X(3872) with transverse momenta greater than about 4 GeV, the predicted cross section is insensitive to the simplifying assumptions. We also discuss critically a recent analysis that concluded that the prompt production rate at the Tevatron is too large by orders of magnitude for the X(3872) to be a weakly-bound charm-meson molecule. We point out that if charm-meson rescattering is properly taken into account, the upper bound is increased by orders of magnitude and is compatible with the observed production rate at the Tevatron.Comment: 29 pages, 5 figure
    • …
    corecore