6 research outputs found
Immune response to SARS-CoV-2 Omicron variant in patients and vaccinees following homologous and heterologous vaccinations
Antibodies elicited by a triple homologous or heterologous vaccination regimen or following natural SARS-CoV-2 infection combined with a two-dose vaccine course, result in highest neutralization capacity against the Omicron variant BA.1.The SARS-CoV-2 Omicron variant has rapidly replaced the Delta variant of concern. This new variant harbors worrisome mutations on the spike protein, which are able to escape the immunity elicited by vaccination and/or natural infection. To evaluate the impact and susceptibility of different serum samples to the Omicron variant BA.1, samples from COVID-19 patients and vaccinated individuals were tested for their ability to bind and neutralize the original SARS-CoV-2 virus and the Omicron variant BA.1. COVID-19 patients show the most drastic reduction in Omicron-specific antibody response in comparison with the response to the wild-type virus. Antibodies elicited by a triple homologous/heterologous vaccination regimen or following natural SARS-CoV-2 infection combined with a two-dose vaccine course, result in highest neutralization capacity against the Omicron variant BA.1. Overall, these findings confirm that vaccination of COVID-19 survivors and booster dose to vaccinees with mRNA vaccines is the correct strategy to enhance the antibody cross-protection against Omicron variant BA.1
Antigenic sin and multiple breakthrough infections drive converging evolution of COVID-19 neutralizing responses
Understanding the evolution of the B cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is fundamental to design the next generation of vaccines and therapeutics. We longitudinally analyze at the single-cell level almost 900 neutralizing human monoclonal antibodies (nAbs) isolated from vaccinated people and from individuals with hybrid and super hybrid immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most potent neutralization and Fc functions against highly mutated variants belong to the SH cohort. Repertoire analysis shows that the original Wuhan antigenic sin drives the convergent expansion of the same B cell germlines in vaccinated and SH cohorts. Only Omicron breakthrough infections expand previously unseen germ lines and generate broadly nAbs by restoring IGHV3-53/3-66 germ lines. Our analyses find that B cells initially expanded by the original antigenic sin continue to play a fundamental role in the evolution of the immune response toward an evolving virus
SARS-CoV-2 JN.1 variant evasion of IGHV3-53/3-66 B cell germlines
The severe acute respiratory syndrome coronavirus 2 variant JN.1 recently emerged as the dominant variant despite having only one amino acid change on the spike (S) protein receptor binding domain (RBD) compared with the ancestral BA.2.86, which never represented more than 5% of global variants. To define at the molecular level the JN.1 ability to spread globally, we interrogated a panel of 899 neutralizing human monoclonal antibodies. Our data show that the single leucine-455-to-serine mutation in the JN.1 spike protein RBD unleashed the global spread of JN.1, likely occurring by elimination of more than 70% of the neutralizing antibodies mediated by IGHV3-53/3-66 germlines. However, the resilience of class 3 antibodies with low neutralization potency but strong Fc functions may explain the absence of JN.1 severe disease
mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 and BA.5
Omicron strains of SARS-CoV-2 have displayed high transmissibility and immunological escape to antibody responses derived from natural infection and vaccination. Here the authors compare the antibody response to vaccination and natural infection, assessing neutralisation after vaccine doses and analyse the repertoire of such responses
Immunogenicity and safety of COVID-19 booster vaccination: A population-based clinical trial to identify the best vaccination strategy
Background: Various SARS-CoV-2 variants of concerns (VOCs) characterized by higher transmissibility and immune evasion have emerged. Despite reduced vaccine efficacy against VOCs, currently available vaccines provide protection. Population -based evidence on the humoral immune response after booster vaccination is crucial to guide future vaccination strategies and in preparation for imminent COVID-19 waves. Methods: This multicenter, population -based cohort study included 4697 individuals >= 18 years of age who received a booster vaccination. Antibody levels against SARS-CoV-2 receptor binding domain (RBD) and neutralizing antibodies against wild -type (WT) virus and Omicron variants were assessed at baseline (day of booster vaccination) and after four weeks. Safety was evaluated daily within the first week using a participantcompleted electronic diary. Antibody levels were compared across different vaccination strategies, taking into account individual host factors. Results: Our main model including 3838 participants revealed that individuals who received a booster with mRNA-1273 compared to BNT162b2 vaccine had a significantly higher increase (95 %CI) in anti-RBD-antibody levels (37,707 BAU/mL [34,575 -40,839] vs. 27,176 BAU/mL [26,265 -28,087]), and of neutralization levels against WT (1,681 [1490 -1872] vs. 1141 [1004 -1278] and Omicron variant (422 [369 -474] vs. 329 [284 -374]). Neutralizing antibody titres highly correlated with anti-RBD antibodies, with neutralizing capacity 4.4 fold higher against WT compared to Omicron. No differences in safety were found between the two booster vaccines. Conclusion: Our study underlines the superiority of a booster vaccination with mRNA-1273, independent of the primary vaccination and therefore provides guidance on the vaccination strategy
Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST
Mutations of genes encoding the subunits of the succinate dehydrogenase (SDH) complex were described in KIT/PDGFRA wild-type GIST separately in different reports. In this study, we simultaneously sequenced the genome of all subunits, SDHA, SDHB, SDHC, and SDHD in a larger series of KIT/PDGFRA wild-type GIST in order to evaluate the frequency of the mutations and explore their biological role. SDHA, SDHB, SDHC, and SDHD were sequenced on the available samples obtained from 34 KIT/PDGFRA wild-type GISTs. Of these, in 10 cases, both tumor and peripheral blood (PB) were available, in 19 cases only tumor, and in 5 cases only PB. Overall, 9 of the 34 patients with KIT/PDGFRA wild-type GIST carried mutations in one of the four subunits of the SDH complex (six patients in SDHA, two in SDHB, one in SDHC). WB and immunohistochemistry analysis showed that patients with KIT/PDGFRA wild-type GIST who harbored SDHA mutations exhibited a significant downregulation of both SDHA and SDHB protein expression, with respect to the other GIST lacking SDH mutations and to KIT/PDGFRA-mutated GIST. Clinically, four out of six patients with SDHA mutations presented with metastatic disease at diagnosis with a very slow, indolent course. Patients with KIT/PDGFRA wild-type GIST may harbor germline and/or de novo mutations of SDH complex with prevalence for mutations within SDHA, which is associated with a downregulation of SDHA and SDHB protein expression. The presence of germline mutations may suggest that these patients should be followed up for the risk of development of other cancers.Europea