100 research outputs found

    Consistent and transferrable coarse-grained model for semidilute polymer solutions in good solvent

    Full text link
    We present a coarse-grained model for linear polymers with a tunable number of effective atoms (blobs) per chain interacting by intra- and inter-molecular potentials obtained at zero density. We show how this model is able to accurately reproduce the universal properties of the underlying solution of athermal linear chains at various levels of coarse-graining and in a range of chain densities which can be widened by increasing the spatial resolution of the multiblob representation, i.e., the number of blobs per chain. The present model is unique in its ability to quantitatively predict thermodynamic and large scale structural properties of polymer solutions deep in the semidilute regime with a very limited computational effort, overcoming most of the problems related to the simulations of semidilute polymer solutions in good solvent conditions.Comment: 19 pages, 15 figures, 3 table

    Depletion effects in colloid-polymer solutions

    Full text link
    The surface tension, the adsorption, and the depletion thickness of polymers close to a single nonadsorbing colloidal sphere are computed by means of Monte Carlo simulations. We consider polymers under good-solvent conditions and in the thermal crossover region between good-solvent and θ\theta behavior. In the dilute regime we consider a wide range of values of qq, from q=0q = 0 (planar surface) up to q30q\approx 30-50, while in the semidilute regime, for ρp/ρp4\rho_p/\rho_p^*\le 4 (ρp\rho_p is the polymer concentration and ρp\rho_p^* is its value at overlap), we only consider q=0,0.5,1q = 0,0.5,1 and 2. The results are compared with the available theoretical predictions, verifying the existing scaling arguments. Field-theoretical results, both in the dilute and in the semidilute regime, are in good agreement with the numerical estimates for polymers under good-solvent conditions.Comment: 26 pages, 12 figure

    Bulk viscosity of the Lennard-Jones system at the triple point by dynamical Non Equilibrium Molecular Dynamics

    Full text link
    Non-equilibrium Molecular Dynamics (NEMD) calculations of the bulk viscosity of the triple point Lennard-Jones fluid are performed with the aim of investigating the origin of the observed disagreement between Green-Kubo estimates and previous NEMD data. We show that a careful application of the Doll's perturbation field, the dynamical NEMD method, the instantaneous form of the perturbation and the "subtraction technique" provides a NEMD estimate of the bulk viscosity at zero field in full agreement with the value obtained by the Green-Kubo formula. As previously reported for the shear viscosity, we find that the bulk viscosity exhibits a large linear regime with the field intensity which confirms the Lennard-Jones fluid as a genuine Newtonian fluid even at triple point.Comment: 27 pages, 11 figure

    Coarse-graining polymer solutions: a critical appraisal of single- and multi-site models

    Full text link
    We critically discuss and review the general ideas behind single- and multi-site coarse-grained (CG) models as applied to macromolecular solutions in the dilute and semi-dilute regime. We first consider single-site models with zero-density and density-dependent pair potentials. We highlight advantages and limitations of each option in reproducing the thermodynamic behavior and the large-scale structure of the underlying reference model. As a case study we consider solutions of linear homopolymers in a solvent of variable quality. Secondly, we extend the discussion to multi-component systems presenting, as a test case, results for mixtures of colloids and polymers. Specifically, we found the CG model with zero-density potentials to be unable to predict fluid-fluid demixing in a reasonable range of densities for mixtures of colloids and polymers of equal size. For larger colloids, the polymer volume fractions at which phase separation occurs are largely overestimated. CG models with density-dependent potentials are somewhat less accurate than models with zero-density potentials in reproducing the thermodynamics of the system and, although they presents a phase separation, they significantly underestimate the polymer volume fractions along the binodal. Finally, we discuss a general multi-site strategy, which is thermodynamically consistent and fully transferable with the number of sites, and that allows us to overcome most of the limitations discussed for single-site models.Comment: 23 pages, 9 figures, 4 table

    Integral-equation analysis of single-site coarse-grained models for polymer-colloid mixtures

    Full text link
    We discuss the reliability of integral-equation methods based on several commonly used closure relations in determining the phase diagram of coarse-grained models of soft-matter systems characterized by mutually interacting soft and hard-core particles. Specifically, we consider a set of potentials appropriate to describe a system of hard-sphere colloids and linear homopolymers in good solvent, and investigate the behavior when the soft particles are smaller than the colloids, which is the regime of validity of the coarse-grained models. Using computer-simulation results as a benchmark, we find that the hypernetted-chain approximation provides accurate estimates of thermodynamics and structure in the colloid-gas phase in which the density of colloids is small. On the other hand, all closures considered appear to be unable to describe the behavior of the mixture in the colloid-liquid phase, as they cease to converge at polymer densities significantly smaller than those at the binodal. As a consequence, integral equations appear to be unable to predict a quantitatively correct phase diagram.Comment: 16 pages, 11 figures, 3 table

    Single chain elasticity and thermoelasticity of polyethylene

    Full text link
    Single-chain elasticity of polyethylene at θ\theta point up to 90% of stretching with respect to its contour length is computed by Monte-Carlo simulation of an atomistic model in continuous space. The elasticity law together with the free-energy and the internal energy variations with stretching are found to be very well represented by the wormlike chain model up to 65% of the chain elongation, provided the persistence length is treated as a temperature dependent parameter. Beyond this value of elongation simple ideal chain models are not able to describe the Monte Carlo data in a thermodynamic consistent way. This study reinforces the use of the wormlike chain model to interpret experimental data on the elasticity of synthetic polymers in the finite extensibility regime, provided the chain is not yet in its fully stretched regime. Specific solvent effects on the elasticity law and the partition between energetic and entropic contributions to single chain elasticity are investigated.Comment: 32 pages with 5 figures included. Accepted as a regular paper on The Journal of Chemical Physics, August 2002. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physic

    Equation of state of metallic hydrogen from Coupled Electron-Ion Monte Carlo simulations

    Full text link
    We present a study of hydrogen at pressures higher than molecular dissociation using the Coupled Electron-Ion Monte Carlo method. These calculations use the accurate Reptation Quantum Monte Carlo method to estimate the electronic energy and pressure while doing a Monte Carlo simulation of the protons. In addition to presenting simulation results for the equation of state over a large region of phase space, we report the free energy obtained by thermodynamic integration. We find very good agreement with DFT calculations for pressures beyond 600 GPa and densities above ρ=1.4g/cm3\rho=1.4 g/cm^3. Both thermodynamic as well as structural properties are accurately reproduced by DFT calculations. This agreement gives a strong support to the different approximations employed in DFT, specifically the approximate exchange-correlation potential and the use of pseudopotentials for the range of densities considered. We find disagreement with chemical models, which suggests a reinvestigation of planetary models, previously constructed using the Saumon-Chabrier-Van Horn equations of state.Comment: 9 pages, 7 figure
    corecore