94 research outputs found
Analysis, classification and comparison of scheduling techniques for software transactional memories
Transactional Memory (TM) is a practical programming paradigm for developing concurrent applications. Performance is a critical factor for TM implementations, and various studies demonstrated that specialised transaction/thread scheduling support is essential for implementing performance-effective TM systems. After one decade of research, this article reviews the wide variety of scheduling techniques proposed for Software Transactional Memories. Based on peculiarities and differences of the adopted scheduling strategies, we propose a classification of the existing techniques, and we discuss the specific characteristics of each technique. Also, we analyse the results of previous evaluation and comparison studies, and we present the results of a new experimental study encompassing techniques based on different scheduling strategies. Finally, we identify potential strengths and weaknesses of the different techniques, as well as the issues that require to be further investigated
Performance models of concurrency control protocols for transaction processing systems
Transaction processing plays a key role in a lot of IT infrastructures. It is widely used in a variety of contexts, spanning from database management systems to concurrent programming tools. Transaction processing systems leverage on concurrency control protocols, which allow them to concurrently process transactions preserving essential properties, as isolation and atomicity. Performance is a critical aspect of transaction processing systems, and it is unavoidably affected by the concurrency control. For this reason, methods and techniques to assess and predict the performance of concurrency control protocols are of interest for many IT players, including application designers, developers and system administrators. The analysis and the proper understanding of the impact on the system performance of these protocols require quantitative approaches. Analytical modeling is a practical approach for building cost-effective computer system performance models, enabling us to quantitatively describe the complex dynamics characterizing these systems. In this dissertation we present analytical performance models of concurrency control protocols. We deal with both traditional transaction processing systems, such as database management systems, and emerging ones, as transactional memories. The analysis focuses on widely used protocols, providing detailed performance models and validation studies. In addition, we propose new modeling approaches, which also broaden the scope of our study towards a more realistic, application-oriented, performance analysis
Adaptive Transactional Memories: Performance and Energy Consumption Tradeoffs
Energy efficiency is becoming a pressing issue, especially in large data centers where it entails, at the same time, a non-negligible management cost, an enhancement of hardware fault probability, and a significant environmental footprint. In this paper, we study how Software Transactional Memories (STM) can provide benefits on both power saving and the overall applications’ execution performance. This is related to the fact that encapsulating shared-data accesses within transactions gives the freedom to the STM middleware to both ensure consistency and reduce the actual data contention, the latter having been shown to affect the overall power needed to complete the application’s execution.
We have selected a set of self-adaptive extensions to existing STM middlewares (namely, TinySTM and R-STM) to prove how self-adapting computation can capture the actual degree of parallelism and/or logical contention on shared data in a better way, enhancing even more the intrinsic benefits provided by STM. Of course, this benefit comes at a cost, which is the actual execution time required by the proposed approaches to precisely tune the execution parameters for reducing power consumption and enhancing execution performance. Nevertheless, the results hereby provided show that adaptivity is a strictly necessary requirement to reduce energy consumption in STM systems: Without it, it is not possible to reach any acceptable level of energy efficiency at all
Proactive cloud management for highly heterogeneous multi-cloud infrastructures
Various literature studies demonstrated that the cloud computing paradigm can help to improve availability and performance of applications subject to the problem of software anomalies. Indeed, the cloud resource provisioning model enables users to rapidly access new processing resources, even distributed over different geographical regions, that can be promptly used in the case of, e.g., crashes or hangs of running machines, as well as to balance the load in the case of overloaded machines. Nevertheless, managing a complex geographically-distributed cloud deploy could be a complex and time-consuming task. Autonomic Cloud Manager (ACM) Framework is an autonomic framework for supporting proactive management of applications deployed over multiple cloud regions. It uses machine learning models to predict failures of virtual machines and to proactively redirect the load to healthy machines/cloud regions. In this paper, we study different policies to perform efficient proactive load balancing across cloud regions in order to mitigate the effect of software anomalies. These policies use predictions about the mean time to failure of virtual machines. We consider the case of heterogeneous cloud regions, i.e regions with different amount of resources, and we provide an experimental assessment of these policies in the context of ACM Framework
Transparent support for partial rollback in software transactional memories
The Software Transactional Memory (STM) paradigm has gained momentum thanks to its ability to provide synchronization transparency in concurrent applications. With this paradigm, accesses to data structures that are shared among multiple threads are carried out within transactions, which are properly handled by the STM layer with no intervention by the application code. In this article we propose an enhancement of typical STM architectures which allows supporting partial rollback of active transactions, as opposed to the typical case where a rollback of a transaction entails squashing all the already-performed work. Our partial rollback scheme is still transparent to the application programmer and has been implemented for x86-64 architectures and for the ELF format, thus being largely usable on POSIX-compliant systems hosted on top of off-the-shelf architectures. We integrated it within the TinySTM open-source library and we present experimental results for the STAMP STM benchmark run on top of a 32-core HP ProLiant server. © 2013 Springer-Verlag
Analytical/ML Mixed Approach for Concurrency Regulation in Software Transactional Memory
In this article we exploit a combination of analytical and Machine Learning (ML) techniques in order to build a performance model allowing to dynamically tune the level of concurrency of applications based on Software Transactional Memory (STM). Our mixed approach has the advantage of reducing the training time of pure machine learning methods, and avoiding approximation errors typically affecting pure analytical approaches. Hence it allows very fast construction of highly reliable performance models, which can be promptly and effectively exploited for optimizing actual application runs. We also present a real implementation of a concurrency regulation architecture, based on the mixed modeling approach, which has been integrated with the open source Tiny STM package, together with experimental data related to runs of applications taken from the STAMP benchmark suite demonstrating the effectiveness of our proposal. © 2014 IEEE
Providing Transaction Class-Based QoS in In-Memory Data Grids via Machine Learning
Elastic architectures and the ”pay-as-you-go” resource pricing model offered by many cloud infrastructure providers may seem the right choice for companies dealing with data centric applications characterized by high variable workload. In such a context, in-memory transactional data grids have demonstrated to be particularly suited for exploiting advantages provided by elastic computing platforms, mainly thanks to their ability to be dynamically (re-)sized and tuned. Anyway, when specific QoS requirements have to be met, this kind of architectures have revealed to be complex to be managed by humans. Particularly, their management is a very complex task without the stand of mechanisms supporting run-time automatic sizing/tuning of the data platform and the underlying (virtual) hardware resources provided by the cloud. In this paper, we present a neural network-based architecture where the system is constantly and automatically re-configured, particularly in terms of computing resources
Prompt Application-Transparent Transaction Revalidation in Software Transactional Memory
Software Transactional Memory (STM) allows encapsulating shared-data accesses within transactions, executed with atomicity and isolation guarantees. The assessment of the consistency of a running transaction is performed by the STM layer at specific points of its execution, such as when a read or write access to a shared object occurs, or upon a commit attempt. However, performance and energy efficiency issues may arise when no shared-data read/write operation occurs for a while along a thread running a transaction. In this scenario, the STM layer may not regain control for a considerable amount of time, thus not being able to early detect if such transaction has become inconsistent in the meantime. To tackle this problem we present an STM architecture that, thanks to a lightweight operating system support, is able to perform a fine-grain periodic (hence prompt) revalidation of running transactions. Our proposal targets Linux and x86 systems and has been integrated with the open source TinySTM package. Experimental results with a port of the TPC-C benchmark to STM environments show the effectiveness of our solution
Preemptive Software Transactional Memory
In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment
- …