28 research outputs found
Next-generation sequencing identified SPATC1L as a possible candidate gene for both early-onset and age-related hearing loss
Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss
A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing
The miR-96, miR-182 and miR-183 microRNA (miRNA) family is essential for differentiation and function of the vertebrate inner ear. Recently, point mutations within the seed region of miR-96 were reported in two Spanish families with autosomal dominant non-syndromic sensorineural hearing loss (NSHL) and in a mouse model of NSHL. We screened 882 NSHL patients and 836 normal-hearing Italian controls and identified one putative novel mutation within the miR-96 gene in a family with autosomal dominant NSHL. Although located outside the mature miR-96 sequence, the detected variant replaces a highly conserved nucleotide within the companion miR-96*, and is predicted to reduce the stability of the pre-miRNA hairpin. To evaluate the effect of the detected mutation on miR-96/mir-96* biogenesis, we investigated the maturation of miR-96 by transient expression in mammalian cells, followed by real-time reverse-transcription polymerase chain reaction (PCR). We found that both miR-96 and miR-96* levels were significantly reduced in the mutant, whereas the precursor levels were unaffected. Moreover, miR-96 and miR-96* expression levels could be restored by a compensatory mutation that reconstitutes the secondary structure of the pre-miR-96 hairpin, demonstrating that the mutation hinders precursor processing, probably interfering with Dicer cleavage. Finally, even though the mature miR-96 sequence is not altered, we demonstrated that the identified mutation significantly impacts on miR-96 regulation of selected targets. In conclusion, we provide further evidence of the involvement of miR-96 mutations in human deafness and demonstrate that a quantitative defect of this miRNA may contribute to NSHL
Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness
Characterization of a cytogenetic 17q11.2 deletion in an NF1 patient with a contiguous gene syndrome
X-Linked Alport Syndrome in Women: Genotype and Clinical Course in 24 Cases
Objectives: X-linked Alport syndrome (XLAS) females are at risk of developing proteinuria and chronic kidney damage (CKD). The aim of this study is to evaluate the genotype-phenotype correlation in this rare population.Materials and Methods: This is a prospective, observational study of XLAS females, confirmed by a pathogenic mutation in COL4A5 and renal ultrastructural evaluation. Proteinuria, renal function and extrarenal involvement were monitored during follow-up. Patients were divided in 2 groups, according to mutations in COL4A5: missense (Group 1) and non-missense variants (Group 2).Results: Twenty-four XLAS females, aged 10.6 +/- 10.4 years at clinical onset (mean follow-up: 13.1 +/- 12.6 years) were recruited between 2000 and 2017 at a single center. In group 1 there were 10 patients and in group 2, 14 (mean age at the end of follow-up: 24.9 +/- 13.6 and 23.2 +/- 13.8 years, respectively). One patient in Group 1 and 9 in Group 2 (p = 0.013) developed proteinuria during follow-up. Mean eGFR at last follow-up was lower in Group 2 (p = 0.027), where two patients developed CKD. No differences in hearing loss were documented among the two groups. Two patients in Group 2 carried one mutation in both COL4A5 and COL4A3 (digenic inheritance) and were proteinuric. In one family, the mother presented only hematuria while the daughter was proteinuric and presented a greater inactivation of the X chromosome carrying the wild-type allele.Conclusions: The appearance of proteinuria and CKD is more frequent in patients with severe variants. Carrying digenic inheritance and skewed XCI seem to be additional risk factors for proteinuria in XLAS females
In-depth genetic and molecular characterization of diaphanous related formin 2 (DIAPH2) and its role in the inner ear.
Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness
Enrichment of LOVD-USHbases with 152 USH2A Genotypes Defines an Extensive Mutational Spectrum and Highlights Missense Hotspots
International audienceAlterations of USH2A, encoding usherin, are responsible for more than 70% of cases of Usher syndrome type II (USH2), a recessive disorder that combines moderate to severe hearing loss and retinal degeneration. The longest USH2A transcript encodes usherin isoform b, a 5,202-amino-acid transmembrane protein with an exceptionally large extracellular domain consisting notably of a Laminin N-terminal domain and numerous Laminin EGF-like (LE) and Fibronectin type III (FN3) repeats. Mutations of USH2A are scattered throughout the gene and mostly private. Annotating these variants is therefore of major importance to correctly assign pathogenicity. We have extensively genotyped a novel cohort of 152 Usher patients and identified 158 different mutations, of which 93 are newly described. Pooling this new data with the existing pathogenic variants already incorporated in USHbases reveals several previously unappreciated features of the mutational spectrum. We show that parts of the protein are more likely to tolerate single amino acid variations, whereas others constitute pathogenic missense hotspots. We have found, in repeated LE and FN3 domains, a nonequal distribution of the missense mutations that highlights some crucial positions in usherin with possible consequences for the assessment of the pathogenicity of the numerous missense variants identified in USH2A
<i>In-vitro</i> analysis of the impact of c.2245-40A>G variant on <i>COL4A5</i> pre-mRNA splicing.
<p>(A) Schematic representation of the hybrid pBS-KS-COL4A5_ex29 minigene where α-globin exons are represented by light grey boxes, fibronectin (<i>FN1</i>) exons by white boxes, whereas introns are shown as black lines (not to scale). Exon 29 of <i>COL4A5</i> is represented by a dark grey box. The c.2245-40A>G mutation in intron 28 is indicated by a star. Primers used in RT-PCR assays are also indicated. (B) On the left, agarose gel (2%) electrophoresis of RT-PCR products obtained from RNA of HEK293 cells transfected with the wild-type (wt) or mutant (mut) minigene vector. M: molecular weight marker (pUC9-<i>Hae</i>III). In the middle, GeneMapper windows show fluorescence peaks corresponding to the molecular species amplified by RT-PCR. Grey shaded peaks correspond to the RT-PCR-labeled products, whose relative quantitation is reported on the right of the panel (%). Unshaded peaks represent the size standard (ROX-500 HD). The <i>x</i> axis indicates fluorescence units. On the right, schematic representation of the splicing products, as verified by Sanger sequencing. The length of each fragment is shown.</p
Alport syndrome cold cases: Missing mutations identified by exome sequencing and functional analysis
<div><p>Alport syndrome (AS) is an inherited progressive renal disease caused by mutations in <i>COL4A3</i>, <i>COL4A4</i>, and <i>COL4A5</i> genes. Despite simultaneous screening of these genes being widely available, mutation detection still remains incomplete in a non-marginal portion of patients. Here, we applied whole-exome sequencing (WES) in 3 Italian families negative after candidate-gene analyses. In Family 1, we identified a novel heterozygous intronic variant (c.2245-40A>G) -outside the conventionally screened candidate region for diagnosis- potentially disrupting <i>COL4A5</i> exon29 splicing. Using a minigene-based approach in HEK293 cells we demonstrated that this variant abolishes exon29 branch site, causing exon skipping. Moreover, skewed X-inactivation of the c.2245-40A>G allele correlated with disease severity in heterozygous females. In Family 2, WES highlighted a novel <i>COL4A5</i> hemizygous missense mutation (p.Gly491Asp), which segregates with the phenotype and impacts on a highly-conserved residue. Finally, in Family 3, we detected a homozygous 24-bp in-frame deletion in <i>COL4A3</i> exon1 (NM_000091.4:c.30_53del:p.Val11_Leu18del or c.40_63del24:p.Leu14_Leu21del), which is ambiguously annotated in databases, although it corresponds to a recurrent AS mutation. Functional analyses showed that this deletion disrupts COL4A3 signal peptide, possibly altering protein secretion. In conclusion, WES -together with functional studies- was fundamental for molecular diagnosis in 3 AS families, highlighting pathogenic variants that escaped previous screenings.</p></div