4 research outputs found
Survival time and prognostic factors in canine leishmaniosis in a non-endemic country treated with a two-phase protocol including initial allopurinol monotherapy
Background: Leishmania infantum is an intracellular protozoan parasite which is endemic in countries of the Mediterranean Basin. Leishmaniosis is increasingly diagnosed in non-endemic areas due to the relocation of dogs from endemic areas and the travel of dogs to and from these areas. The prognosis of leishmaniosis in these dogs may differ from that of those in endemic areas. The aims of this study were (1) to determine the Kaplan–Meier estimated survival time for dogs with leishmaniosis in the Netherlands (a non-endemic country), (2) to determine if clinicopathological variables at the time of diagnosis predicted the survival of these dogs, and (3) to evaluate the effect of a two-phase therapy protocol of allopurinol monotherapy followed by meglumine antimoniate and/or miltefosine in the case of incomplete remission or relapse. Methods: The database of the Department of Clinical Sciences of Companion Animals of the Faculty of Veterinary Medicine, Utrecht University was investigated for leishmaniosis patients. Patient records were reviewed for signalment and clinicopathological data at the time of diagnosis. Only treatment-naive patients were included. Follow-up was performed during the study by phone contact and included treatment received and date and cause of death. Univariate analysis was performed using the Cox proportional hazards regression model. Results: The estimated median Kaplan–Meier survival time was 6.4 years. In the univariate analysis, increases in monocyte, plasma urea and creatinine concentrations, and urine protein to creatinine ratio were all significantly associated with decreased survival time. The majority of patients only received allopurinol monotherapy. Conclusions: Canine leishmaniosis patients in our study population in the Netherlands, which is non-endemic for the disease, had an estimated Kaplan–Meier median survival time of 6.4 years, which is comparable to the outcome of other reported therapy protocols. Increased plasma urea and creatinine concentrations and monocyte concentration were statistically associated with an increased risk of death. We conclude that initial allopurinol monotherapy for 3 months should be effective in more than half of canine leishmaniosis cases, provided there is adequate follow-up, and that meglumine antimoniate or miltefosine therapy should be started as the second phase of the protocol in cases where remission is incomplete or there is a relapse. Graphical Abstract: [Figure not available: see fulltext.
False positive antigen test for Dirofilaria immitis after heat treatment of the blood sample in a microfilaremic dog infected with Acanthocheilonema dracunculoides
Dirofilaria immitis is responsible for heartworm disease in dogs in endemic areas worldwide. Screening for this infection is done by blood tests. Antigen testing is the most sensitive method to detect an infection with adult (female) worms. Microscopic examination of a blood smear or Knott’s test can be used to detect circulating microfilariae, the infective larvae. To increase the sensitivity of the antigen test by decreasing the false negative test results, heating of the blood sample has been recommended in recent guidelines. Heating is believed to remove blocking immune-complexes. Circulating microfilariae are not specific findings for heartworm infection, as other nematodes (among others, Acanthocheilonema dracunculoides) can also result in microfilaremia. Although the type of microfilariae cannot be determined by microscopy alone, real-time PCR can reliably identify the infecting nematode species. Correct identification of the parasite is of major importance, as an infection with D. immitis requires antiparasitic therapy, whereas A. dracunculoides is thought to be a clinically irrelevant coincidental finding. The present case report describes a microfilaremic dog where the initial antigen test for D. immitis turned positive after heat treatment, whereas real-time PCR revealed that the microfilariae were A. dracunculoides (syn. Dipetalonema dracunculoides). A circa 5-year old, asymptomatic Spanish mastiff dog was referred for heartworm therapy because microfilariae were found via a screening blood test. The dog was recently imported to the Netherlands from Spain, where it had been a stray dog. Antigen tests on a plasma sample for D. immitis were performed with three different test kits, which all turned out to be negative. However, heat treatment of two of these samples were carried out and both of them led to a positive antigen test result. Real-time PCR showed that the circulating microfilariae belonged to A. dracunculoides species. Three administrations of moxidectin spot-on at monthly intervals resulted in a negative antigen and a negative Knott’s tests one month after the last treatment. We conclude that heat treatment of initially negative blood samples for D. immitis could lead to false positive antigen test results if the dog is infected with A. dracunculoides
False positive antigen test for Dirofilaria immitis after heat treatment of the blood sample in a microfilaremic dog infected with Acanthocheilonema dracunculoides
Dirofilaria immitis is responsible for heartworm disease in dogs in endemic areas worldwide. Screening for this infection is done by blood tests. Antigen testing is the most sensitive method to detect an infection with adult (female) worms. Microscopic examination of a blood smear or Knott’s test can be used to detect circulating microfilariae, the infective larvae. To increase the sensitivity of the antigen test by decreasing the false negative test results, heating of the blood sample has been recommended in recent guidelines. Heating is believed to remove blocking immune-complexes. Circulating microfilariae are not specific findings for heartworm infection, as other nematodes (among others, Acanthocheilonema dracunculoides) can also result in microfilaremia. Although the type of microfilariae cannot be determined by microscopy alone, real-time PCR can reliably identify the infecting nematode species. Correct identification of the parasite is of major importance, as an infection with D. immitis requires antiparasitic therapy, whereas A. dracunculoides is thought to be a clinically irrelevant coincidental finding. The present case report describes a microfilaremic dog where the initial antigen test for D. immitis turned positive after heat treatment, whereas real-time PCR revealed that the microfilariae were A. dracunculoides (syn. Dipetalonema dracunculoides). A circa 5-year old, asymptomatic Spanish mastiff dog was referred for heartworm therapy because microfilariae were found via a screening blood test. The dog was recently imported to the Netherlands from Spain, where it had been a stray dog. Antigen tests on a plasma sample for D. immitis were performed with three different test kits, which all turned out to be negative. However, heat treatment of two of these samples were carried out and both of them led to a positive antigen test result. Real-time PCR showed that the circulating microfilariae belonged to A. dracunculoides species. Three administrations of moxidectin spot-on at monthly intervals resulted in a negative antigen and a negative Knott’s tests one month after the last treatment. We conclude that heat treatment of initially negative blood samples for D. immitis could lead to false positive antigen test results if the dog is infected with A. dracunculoides
Survival time and prognostic factors in canine leishmaniosis in a non-endemic country treated with a two-phase protocol including initial allopurinol monotherapy
Abstract Background Leishmania infantum is an intracellular protozoan parasite which is endemic in countries of the Mediterranean Basin. Leishmaniosis is increasingly diagnosed in non-endemic areas due to the relocation of dogs from endemic areas and the travel of dogs to and from these areas. The prognosis of leishmaniosis in these dogs may differ from that of those in endemic areas. The aims of this study were (1) to determine the Kaplan–Meier estimated survival time for dogs with leishmaniosis in the Netherlands (a non-endemic country), (2) to determine if clinicopathological variables at the time of diagnosis predicted the survival of these dogs, and (3) to evaluate the effect of a two-phase therapy protocol of allopurinol monotherapy followed by meglumine antimoniate and/or miltefosine in the case of incomplete remission or relapse. Methods The database of the Department of Clinical Sciences of Companion Animals of the Faculty of Veterinary Medicine, Utrecht University was investigated for leishmaniosis patients. Patient records were reviewed for signalment and clinicopathological data at the time of diagnosis. Only treatment-naive patients were included. Follow-up was performed during the study by phone contact and included treatment received and date and cause of death. Univariate analysis was performed using the Cox proportional hazards regression model. Results The estimated median Kaplan–Meier survival time was 6.4 years. In the univariate analysis, increases in monocyte, plasma urea and creatinine concentrations, and urine protein to creatinine ratio were all significantly associated with decreased survival time. The majority of patients only received allopurinol monotherapy. Conclusions Canine leishmaniosis patients in our study population in the Netherlands, which is non-endemic for the disease, had an estimated Kaplan–Meier median survival time of 6.4 years, which is comparable to the outcome of other reported therapy protocols. Increased plasma urea and creatinine concentrations and monocyte concentration were statistically associated with an increased risk of death. We conclude that initial allopurinol monotherapy for 3 months should be effective in more than half of canine leishmaniosis cases, provided there is adequate follow-up, and that meglumine antimoniate or miltefosine therapy should be started as the second phase of the protocol in cases where remission is incomplete or there is a relapse. Graphical Abstrac