23 research outputs found

    Abstract Applications

    No full text
    (1) recognition of special curves and surfaces; (2) sampling the offset curve or surface based on bounds on second derivatives; (3) interpolating these points; and (4) removing all unwanted knots using the offset tolerance. The method provides a good handle on error control and results in the fewest number of control points compared to all published work. It also allows one to control the degree and the parametrization of th

    Heterogeneous modeling of medical image data using B-spline functions

    No full text
    Biomedical data visualization and modeling rely predominately on manual processing and utilization of voxel- and facet-based homogeneous models. Biological structures are naturally heterogeneous and it is important to incorporate properties, such as material composition, size and shape, into the modeling process. A method to approximate image density data with a continuous B-spline surface is presented. The proposed approach generates a density point cloud, based on medical image data to reproduce heterogeneity across the image, through point densities. The density point cloud is ordered and approximated with a set of B-spline curves. A B-spline surface is lofted through the cross-sectional B-spline curves preserving the heterogeneity of the point cloud dataset. Preliminary results indicate that the proposed methodology produces a mathematical representation capable of capturing and preserving density variations with high fidelity

    On Integrating Unmanned Aircraft Systems into the National Airspace System: Issues, Challenges, Operational Restrictions, Certification, and Recommendations

    No full text
    This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an “Equivalent Level of Safety”, or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target levels of safety (TLS) for ground impact and mid-air collision accidents.It discusses elements of a viable roadmap leading to UAS integration in to the NAS. For this second edition of the book almost all chapters include major updates and corrections. There is also a new appendix chapter
    corecore