267 research outputs found

    A cellular automaton for the factor of safety field in landslides modeling

    Full text link
    Landslide inventories show that the statistical distribution of the area of recorded events is well described by a power law over a range of decades. To understand these distributions, we consider a cellular automaton to model a time and position dependent factor of safety. The model is able to reproduce the complex structure of landslide distribution, as experimentally reported. In particular, we investigate the role of the rate of change of the system dynamical variables, induced by an external drive, on landslide modeling and its implications on hazard assessment. As the rate is increased, the model has a crossover from a critical regime with power-laws to non power-law behaviors. We suggest that the detection of patterns of correlated domains in monitored regions can be crucial to identify the response of the system to perturbations, i.e., for hazard assessment.Comment: 4 pages, 3 figure

    Comprehensive Overview on HVDC Converter Transformer Design: Additional Discussions to the IEC/IEEE 60076-57-129 Standard

    Get PDF
    HVDC has been chosen as an economical and technical solution for power transmission through long distances, asynchronous interconnections and long submarine cables crossing. Despite DC transmission benefits to power systems, the converters non-linearity produces undesirable effects to the converter transformer in service, mainly listed in the technical standard IEC/IEEE 60076-57-129. However, additional discussions and complementary information can be found in a plurality of references, which are brought in the article under a comprehensive overview perspective. Some design solutions deal with these effects increasing the technical margins, which have direct influence on manufacturing costs and transformer reliability and availability levels. This article goes through the main topics pointed by the standard and the references, investigating their consequences in the converter transformer operation, in order to provide a comprehensive tutorial on design solutions and considerations to deal with those undesirable effects

    Histological and immunohistochemical characterisation of uterine adenocarcinoma in an Asian elephant (Elephas Maximus)

    Get PDF
    A 56-year-old nulliparous female Asian elephant (Elephas maximus) living at the zoological garden of Naples (Italy), with a clinical history of recurrent colic, was found in agonal state and humane euthanasia was elected. At necropsy the uterine body was moderately increased in size and the lumen was reduced due to a poorly demarcated and infiltrative neoplasm. Furthermore, multiple, whitish, firm nodules were present in both lungs. Histological examination of the uterinemass revealed epithelial cells arranged in tubular or solid pattern infiltrating the endometrium and the muscular layer. Immunohistochemical examination showed immunoreactivity of neoplastic cells to oestrogen receptors antibody. Pulmonary lesions were histologically and immunohistochemically superimposable to the epithelial uterine neoplasm. A definitive diagnosis of uterine adenocarcinoma with pulmonary metastases was made

    Finite driving rate and anisotropy effects in landslide modeling

    Full text link
    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors is presented.Comment: 8 pages, 9 figure

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page

    Electron-phonon effects and transport in carbon nanotubes

    Full text link
    We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.Comment: 5 pages and 4 figure

    Two-gap model for underdoped cuprate superconductors

    Full text link
    Various properties of underdoped superconducting cuprates, including the momentum-dependent pseudogap opening, indicate a behavior which is neither BCS nor Bose-Einstein condensation (BEC) like. To explain this issue we introduce a two-gap model. This model assumes an anisotropic pairing interaction among two kinds of fermions with small and large Fermi velocities representing the quasiparticles near the M and the nodal points of the Fermi surface respectively. We find that a gap forms near the M points resulting into incoherent pairing due to strong fluctuations. Instead the pairing near the nodal points sets in with phase coherence at lower temperature. By tuning the momentum-dependent interaction, the model allows for a continuous evolution from a pure BCS pairing (in the overdoped and optimally doped regime) to a mixed boson-fermion picture (in the strongly underdoped regime).Comment: 5 pages, 1 enclosed figure. For further information see http://htcs.or
    • …
    corecore