22 research outputs found

    Thermodynamic Metrics and Black Hole Physics

    Full text link
    We give a brief survey of thermodynamic metrics, in particular the Hessian of the entropy function, and how they apply to black hole thermodynamics. We then provide a detailed discussion of the Gibbs surface of Kerr black holes. In particular we analyze its global properties, and extend it to take the entropy of the inner horizon into account. A brief discussion of Kerr-Newman black holes is included.Comment: 21 pages, new figures adde

    On Geometro-thermodynamics of Dilaton Black Holes

    Full text link
    In this talk we present the latest results from our ongoing project on geometro-thermodynamics (also known as information geometry of thermodynamics or Ruppeiner geometry) of dilaton BHs in 4D in both Einstein and string frames and a dyonic dilaton BH and at the end we report very briefly results from this approach to the 2D dilaton BHs.Comment: Talk given at 30th Spanish Relativity Meeting (ERE 2007): Relativistic Astrophysics And Cosmology, 10-14 Sep 2007, Puerto de La Cruz, Tenerife, Spain. Typos correcte

    Ruppeiner theory of black hole thermodynamics

    Get PDF
    The Ruppeiner metric as determined by the Hessian of the Gibbs surface provides a geometric description of thermodynamic systems in equilibrium. An interesting example is a black hole in equilibrium with its own Hawking radiation. In this article, we present results from the Ruppeiner study of various black hole families from different gravity theories e.g. 2D dilaton gravity, BTZ, general relativity and higher-dimensional Einstein-Maxwell gravity.Comment: 10 pages, 1 figure. Talk given by N Pidokrajt at ERE2006 in Palma de Mallorca, Spai

    Geometry of Higher-Dimensional Black Hole Thermodynamics

    Full text link
    We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstr\"om (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for d=5d=5 Kerr black hole is curved and divergent in the extremal limit. For d6d \geq 6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d5d \geq 5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5d=5 with double angular momenta.Comment: 8 pages, 2 figures, RevTex, References adde

    Information geometry of asymptotically AdS black holes

    Full text link
    We investigate thermodynamic geometries of two families of asymptotically Anti-de Sitter black holes, i.e. the Reissner-Nordstr\"om Anti-de Sitter in four dimensions and the BTZ black hole. It is found that the Anti-de Sitter space renders the geometry nontrivial (c.f. the Reissner-Nordstr\"om black hole in asymptotically flat background). The BTZ black hole's thermodynamic geometry is trivial despite the fact that it is characterized by the (negative) cosmological constant. As a matter of curiosity we compute thermodynamic geometry of these black holes regarding the cosmological constant as a true parameter but no physically significant results can be derived.Comment: Contribution to proceedings of ERE2008, 4 page

    Anti-de Sitter Quotients, Bubbles of Nothing, and Black Holes

    Full text link
    In 3+1 dimensions there are anti-de quotients which are black holes with toroidal event horizons. By analytic continuation of the Schwarzschild-anti-de Sitter solution (and appropriate identifications) one finds two one parameter families of spacetimes that contain these quotient black holes. One of these families consists of B-metrics ("bubbles of nothing"), the other of black hole spacetimes. All of them have vanishing conserved charges.Comment: 14 pages, 3 figures. References added, one explanation improve

    Flat Information Geometries in Black Hole Thermodynamics

    Full text link
    The Hessian of either the entropy or the energy function can be regarded as a metric on a Gibbs surface. For two parameter families of asymptotically flat black holes in arbitrary dimension one or the other of these metrics are flat, and the state space is a flat wedge. The mathematical reason for this is traced back to the scale invariance of the Einstein-Maxwell equations. The picture of state space that we obtain makes some properties such as the occurence of divergent specific heats transparent.Comment: 14 pages, one figure. Dedicated to Rafael Sorkin's birthda

    Geometro-thermodynamics of tidal charged black holes

    Full text link
    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the 5-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstr\"om black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstr\"om black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincar\'e stability analysis shows no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers.Comment: v3: 23 pages, 8 figures, 1 table, published versio
    corecore