88 research outputs found
COP21 climate negotiators' responses to climate model forecasts
Policymakers involved in climate change negotiations are key users of climate science. It is therefore vital to understand how to communicate scientific information most effectively to this group. We tested how a unique sample of policymakers and negotiators at the Paris COP21 conference update their beliefs on year 2100 global mean temperature increases in response to a statistical summary of climate models' forecasts. We randomized the way information was provided across participants using three different formats similar to those used in Intergovernmental Panel on Climate Change reports. In spite of having received all available relevant scientific information, policymakers adopted such information very conservatively, assigning it less weight than their own prior beliefs. However, providing individual model estimates in addition to the statistical range was more effective in mitigating such inertia. The experiment was repeated with a population of European MBA students who, despite starting from similar priors, reported conditional probabilities closer to the provided models' forecasts than policymakers. There was also no effect of presentation format in the MBA sample. These results highlight the importance of testing visualization tools directly on the population of interest
Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer
The effect of selective and non-selective cyclo-oxygenase inhibition on tumour growth and metastasis in an orthotopic model of breast cancer was investigated. 4T1 mammary adenocarcinoma cells were injected into the mammary fat pad of female BALB/c mice. When tumours reached a mean tumour diameter of 8.4±0.4 mm, mice were randomised into three groups (n=6 per group) and received daily intraperitoneal injections of the selective cyclo-oxygenase-2 inhibitor, SC-236, the non selective cyclo-oxygenase inhibitor, Indomethacin, or drug vehicle. Tumour diameter was recorded on alternate days. From 8 days after initiation of treatment, tumour diameter in animals treated with either SC-236 or indomethacin was significantly reduced relative to controls. Both primary tumour weight and the number of lung metastases were significantly reduced in the SC-236 and indomethacin treated mice. Microvessel density was reduced and tumor cell apoptosis increased in the primary tumour of mice treated with either the selective or non-selective cyclo-oxygenase inhibitor. In vitro, cyclo-oxygenase inhibition decreased vascular endothelial growth factor production and increased apoptosis of tumour cells. Our results suggest that cyclo-oxygenase inhibitors will be of value in the treatment of both primary and metastatic breast cancer
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
Corrigendum: Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out
The ability to control dynamics of quantum states by optical interference, and subsequent
electrical read-out, is crucial for solid state quantum technologies. Ramsey interference has
been successfully observed for spins in silicon and nitrogen vacancy centres in diamond, and
for orbital motion in InAs quantum dots. Here we demonstrate terahertz optical excitation,
manipulation and destruction via Ramsey interference of orbital wavepackets in Si:P with
electrical read-out. We show milliradian control over the wavefunction phase for the two-level
system formed by the 1s and 2p states. The results have been verified by all-optical echo
detection methods, sensitive only to coherent excitations in the sample. The experiments
open a route to exploitation of donors in silicon for atom trap physics, with concomitant
potential for quantum computing schemes, which rely on orbital superpositions to, for
example, gate the magnetic exchange interactions between impurities
The role of tenascin-C in tissue injury and tumorigenesis
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer
Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures
Since the first demonstration of lasing in direct bandgap GeSn semiconductors, the research efforts for the realization of electrically pumped group IV lasers monolithically integrated on Si have significantly intensified. This led to epitaxial studies of GeSn/SiGeSn hetero- and nanostructures, where charge carrier confinement strongly improves the radiative emission properties. Based on recent experimental literature data, in this report we discuss the advantages of GeSn/SiGeSn multi quantum well and quantum dot structures, aiming to propose a roadmap for group IV epitaxy. Calculations based on 8-band k∙p and effective mass method have been performed to determine band discontinuities, the energy difference between Γ- and L-valley conduction band edges, and optical properties such as material gain and optical cross section. The effects of these parameters are systematically analyzed for an experimentally achievable range of Sn (10 to 20 at.%) and Si (1 to 10 at.%) contents, as well as strain values (−1 to 1%). We show that charge carriers can be efficiently confined in the active region of optical devices for experimentally acceptable Sn contents in both multi quantum well and quantum dot configurations
Weak probe readout of coherent impurity orbital superpositions in silicon
Pump-probe spectroscopy is the most common time-resolved technique for investigation of electronic dynamics, and the results provide the incoherent population decay time T1. Here we use a modified pump-probe experiment to investigate coherent dynamics, and we demonstrate this with a measurement of the inhomogeneous dephasing time T2* for phosphorus impurities in silicon. The pulse sequence produces the same information as previous coherent all-optical (photon-echo-based) techniques but is simpler. The probe signal strength is first order in pulse area but its effect on the target state is only second order, meaning that it does not demolish the quantum information. We propose simple extensions to the technique to measure the homogeneous dephasing time T2, or to perform tomography of the target qubit
- …