69 research outputs found
Sédimentologie, paléontologie et paléoenvironnements cÎtiers de la région de Porrentruy (Sud-Rhénan, PaléogÚne, Jura, Suisse): implications géodynamiques
Abstract.: Located in the distal part of the Swiss Molasse Basin and in the southern extension of the Rhine Graben, the conglomeratic deposits belonging to the Gompholithes & Conglomérats stratigraphic group have been the object of detailed sedimentological and paleontological studies. The great number of outcrops that came into sight during the building works of the Transjurane highway in the vicinity of Porrentruy (Swiss Jura) lead to a better understanding of Rupelian paleoenvironments (Early Oligocene). The sedimentological and paleontological studies reveal the existence of coastal environments with Mesozoic limestone cliffs notched by canyons with torrential rivers. Those rivers eroding the Mesozoic series create pebbles deposits forming marine deltas prograding towards North. In protected areas, some lacustrine environments can develop. These conglomeratic deposits are strongly bound to the Rupelian tectonic activity. The rhenish distension and the activity of the transform faults located between the Rhine Graben and the Bresse basin divide the Mesozoic blocks in horst and graben structures, thus allowing the erosion of sediments in higher regions (horst) and their transport in lower zones (graben). The discovery of rare pebbles made of endogene and effusive rocks in those conglomeratic deposits shows a transport coming from the Vosges massifs towards south to the Porrentruy region, probably with the support of a littoral drift. Although the surrection of the Vosges and Schwarzwald massifs (and the beginning of their erosion) is normally attributed to the base of the Miocene, the presence of those pebbles attests the existence of faults putting the basement of the Vosges massif to erosion since the base of Rupelia
Aprendizaje cooperativo: una nueva metodologĂa motivadora para el alumno
International audienc
Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene
Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian âȘ Serie Grise â« (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocen
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25âŻyears of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Chapitre 4. Un quartier de Faubourg de la ville médiévale et moderne
AprĂšs quelques siĂšcles « silencieux », du moins du point de vue des vestiges matĂ©riels, la rĂ©occupation concrĂšte du site intervient vers la fin du XIIIe siĂšcle. Ă lâimage de la crĂ©ation du quartier antique, le dĂ©veloppement du quartier mĂ©diĂ©val est progressif et dĂ©bute par lâimplantation, somme toute Ă©parse, de bĂątiments de fonctions diverses. 4.1. ENTRE BAS MOYEN ĂGE ET ĂPOQUE MODERNE. SANCTI ADIUTORIS, UNE PAROISSE SUBURBAINE DE CLERMONT. LâAPPORT DES SOURCES TEXTUELLES (JP) 4.1.1. UNE URBA..
Chapitre 3. Entre occupation ponctuelle, abandon et récupération de matériaux (état 5 : Antiquité tardive-Haut Moyen ùge)
Fig. 76 - Plan des vestiges de lâĂ©tat 5. Fig. 77 - Les niveaux de destruction du bĂątiment C. Fig. 78 - Les bois du niveau de destruction du bĂątiment B. Le cinquiĂšme Ă©tat dâoccupation du site est de loin le plus complexe Ă aborder tant chronologiquement que matĂ©riellement (fig. 76). Certains Ă©difices sont encore occupĂ©s tandis que lâon commence, probablement dans le mĂȘme temps, Ă procĂ©der Ă de premiĂšres rĂ©cupĂ©rations de matĂ©riaux. Cette Ă©tape de la vie du quartier, conduisant Ă terme Ă lâab..
Sédimentologie, paléontologie et paléoenvironnements cÎtiers de la région de Porrentruy (Sud-Rhénan, PaléogÚne, Jura, Suisse): implications géodynamiques
SituĂ©s dans la partie la plus distale du bassin molassique suisse et dans le prolongement sud du fossĂ© rhĂ©nan, les dĂ©pĂŽts conglomĂ©ratiques appartenant au groupe stratigraphique des Gompholithes & ConglomĂ©rats ont fait lâobjet dâune Ă©tude sĂ©dimentologique et palĂ©ontologique dĂ©taillĂ©e. La multitude des affleurements rĂ©alisĂ©s lors des travaux de construction de lâautoroute Transjurane dans la rĂ©gion de Porrentruy (Jura), permet dâapprĂ©hender ces palĂ©oenvironnements rupĂ©liens (OligocĂšne infĂ©rieur). Les Ă©tudes sĂ©dimentologiques et palĂ©ontologiques rĂ©vĂšlent lâexistence dâenvironnements cĂŽtiers avec des falaises de calcaires mĂ©sozoĂŻques entaillĂ©es par des canyons oĂč se trouvent des riviĂšres au rĂ©gime torrentiel. Ces riviĂšres qui Ă©rodent les couches du MĂ©sozoĂŻque crĂ©ent des galets qui sont dĂ©posĂ©s sous la forme de deltas marins progradant vers le nord. A lâabri des exutoires des canyons se dĂ©veloppent quelques environnements lacustres. Ces dĂ©pĂŽts conglomĂ©ratiques sont fortement liĂ©s Ă lâactivitĂ© tectonique rupĂ©lienne. La distension rhĂ©nane et lâactivitĂ© de la faille transformante situĂ©e entre le fossĂ© rhĂ©nan et le bassin de la Bresse subdivisent les diffĂ©rents blocs mĂ©sozoĂŻques en horsts et grabens, permettant ainsi lâĂ©rosion des sĂ©diments dans les parties hautes (horst) et leur transport dans les zones basses (graben). La dĂ©couverte de rares galets de roches endogĂšnes et effusives dans les dĂ©pĂŽts conglomĂ©ratiques montre un transport du socle des Vosges vers le sud dans la rĂ©gion de Porrentruy par lâintermĂ©diaire sans doute dâune dĂ©rive littorale. Bien que la surrection des Vosges et de la ForĂȘt-Noire et leur mise Ă lâĂ©rosion soient connues dĂšs la base du MiocĂšne, la prĂ©sence de ces galets atteste lâexistence de failles dĂšs le dĂ©but du RupĂ©lien qui mettent Ă lâĂ©rosion le socle du massif des Vosges.Located in the distal part of the Swiss Molasse Basin and in the southern extension of the Rhine Graben, the conglomeratic deposits belonging to the Gompholithes & ConglomĂ©rats stratigraphic group have been the object of detailed sedimentological and paleontological studies. The great number of outcrops that came into sight during the building works of the Transjurane highway in the vicinity of Porrentruy (Swiss Jura) lead to a better understanding of Rupelian paleoenvironments (Early Oligocene). The sedimentological and paleontological studies reveal the existence of coastal environments with Mesozoic limestone cliffs notched by canyons with torrential rivers. Those rivers eroding the Mesozoic series create pebbles deposits forming marine deltas prograding towards North. In protected areas, some lacustrine environments can develop. These conglomeratic deposits are strongly bound to the Rupelian tectonic activity. The rhenish distension and the activity of the transform faults located between the Rhine Graben and the Bresse basin divide the Mesozoic blocks in horst and graben structures, thus allowing the erosion of sediments in higher regions (horst) and their transport in lower zones (graben). The discovery of rare pebbles made of endogene and effusive rocks in those conglomeratic deposits shows a transport coming from the Vosges massifs towards south to the Porrentruy region, probably with the support of a littoral drift. Although the surrection of the Vosges and Schwarzwald massifs (and the beginning of their erosion) is normally attributed to the base of the Miocene, the presence of those pebbles attests the existence of faults putting the basement of the Vosges massif to erosion since the base of Rupelian.Im distalsten Teil des schweizerischen Molasse-Beckens und in der SĂŒdverlĂ€ngerung des Rheingrabens befinden sich die Konglomeratablagerungen der stratigraphischen Gruppe Gompholithes & ConglomĂ©rats, die hier einer sedimentologischen und palĂ€ontologischen detaillierten Studie unterzogen werden. Die zahlreichen AufschlĂŒsse, die beim Bau der Autobahn Transjurane in der Region von Porrentruy (Jura) zu Tage getreten sind, erlauben, diese rupelische (fruhes OligozĂ€n) PalĂ€oumgebung besser zu verstehen. Die sedimentologischen und palĂ€ontologischen Studien deuten auf die Existenz einer KĂŒste aus mesozoischen Kalkklippen hin, die von Cañons eingeschnitten wurde. Sintflutartige FlĂŒsse, die das Mesozoikum erodierten, Gerölle sedimentierten, die in einem nach Norden progradierenden Delta in das Meer geschĂŒttet wurden. Lokal entwickelte sich eine lakustrine Umgebung mit kontinentalen Kalksedimenten. Diese Konglomeratablagerungen entstanden im Zusammenhang mit der tektonischen AktivitĂ€t im Rupelium. Die Rheingrabendehnung und die AktivitĂ€t der Blattverschiebungen zwischen dem Rheingraben und dem Bresse-Becken fĂŒhrten zur Zergliederung der mesozoischen Blöcke in Horste und GrĂ€ben. Es resultierte die Erosion der Sedimente in den gehobenen Teilen (Horste) und ihr Transport respektive Ablagerung in die niedrigen Zonen (GrĂ€ben). Die Nachweis von Geröllen endogener und effusiver Gesteine in den Konglomeratablagerungen weist auf einen Transport aus dem Vogesen durch KĂŒstenströmungen in Richtung SĂŒden hin in die Region von Porrentruy und auf die Herkunft der Gerölle aus dem Vogesen Massiv. Die Anhebung der Vogesen und des Schwarzwaldes und der Beginn ihrer Erosion wurde bislang mit Unter-MiozĂ€ns datierte. Unsere Untersuchungen belegen die Existenz von BrĂŒchen, und den Beginn der Erosion schon an der Basis des Rupelium
Atlas de marée de l'océan global FES2014: conception et performance
International audienc
FIG. 6. â Meyeria hurtrelleorum n in The decapod crustacean fauna from the Late Jurassic of Cricqueboeuf, Normandy (France)
FIG. 6. â Meyeria hurtrelleorum n. sp. from the late Oxfordian of Cricqueboeuf, Normandy: A-C, paratype MPV 2013.1.289.2, carapace and pleon in connection, dorsal and right lateral views, and interpretative line drawing; D, paratype MPV 2013.1.289.2, carapace and close-up of pleonal somites 2 and 3, right lateral view; E, F, paratype MPV 2013.1.289.4, fragment of carapace and P1 merus, left lateral and dorsal views; G, paratype MPV 2013.1.289.4, close-up of carapace, left lateral view; H, subcomplete specimen MPV 2013.1.289.18, almost totally enclosed in carbonate nodule showing yellowish quartz grains and ferrugineous oolites; I, J, specimen MPV 2013.1.289.58 always enclosed in enclosed in carbonate nodule showing large, yellowish quartz grains. Abbreviations: a, branchiocardiac groove; c, postcervical groove; cd, cardiac groove; dm, dorsal midline; e1e, cervical groove; oc, orbital carina; r, rostrum; sc, scaphocerite; s1-s3, pleonal somites 1 to 3. Photographs: L. Cazes. Line drawing: S. Charbonnier. Scale bars: 5 mm.Published as part of <i>Charbonnier, Sylvain, Garassino, Alessandro, Gendry, Damien, Devillez, Julien & Picot, Laurent, 2023, The decapod crustacean fauna from the Late Jurassic of Cricqueboeuf, Normandy (France), pp. 573-588 in Geodiversitas 45 (19)</i> on page 581, DOI: 10.5252/geodiversitas2023v45a19, <a href="http://zenodo.org/record/10066067">http://zenodo.org/record/10066067</a>
- âŠ