1,353 research outputs found

    Individual Differences in (Non-Visual) Processing Style Predict the Face Inversion Effect

    Get PDF
    Recent research suggests that individuals with relatively weak global precedence (i.e., a smaller propensity to view visual stimuli in a configural manner) show a reduced face inversion effect (FIE). Coupled with such findings, a number of recent studies have demonstrated links between an advantage for feature-based processing and the presentation of traits associated with autism among the general population. The present study sought to bridge these findings by investigating whether a relationship exists between the possession of autism-associated traits (i.e., as indicated by individualsautism quotient [(AQ) and the size of the FIE. Participants completed an on-line study in which the AQ was measured prior to a standard face recognition task where half of the faces were inverted at test. The results confirmed that higher AQ levels were predictive of smaller FIEs. Implications for a common underlying factor relating to processing orientation are discussed

    Time-Delay Polaritonics

    Full text link
    Non-linearity and finite signal propagation speeds are omnipresent in nature, technologies, and real-world problems, where efficient ways of describing and predicting the effects of these elements are in high demand. Advances in engineering condensed matter systems, such as lattices of trapped condensates, have enabled studies on non-linear effects in many-body systems where exchange of particles between lattice nodes is effectively instantaneous. Here, we demonstrate a regime of macroscopic matter-wave systems, in which ballistically expanding condensates of microcavity exciton-polaritons act as picosecond, microscale non-linear oscillators subject to time-delayed interaction. The ease of optical control and readout of polariton condensates enables us to explore the phase space of two interacting condensates up to macroscopic distances highlighting its potential in extended configurations. We demonstrate deterministic tuning of the coupled-condensate system between fixed point and limit cycle regimes, which is fully reproduced by time-delayed coupled equations of motion similar to the Lang-Kobayashi equation

    An atomic scale comparison of the reaction of Bioglass® in two types of simulated body fluid

    Get PDF
    A class of melt quenched silicate glasses, containing calcium, phosphorus and alkali metals, and having the ability to promote bone regeneration and to fuse to living bone, is produced commercially as Bioglass. The changes in structure associated with reacting the bioglass with a body fluid simulant (a buffered Tris(hydroxymethyl)aminomethane growth medium solution or a blood plasma-like salt simulated body fluid) at 37°C have been studied using both high energy and grazing incidence x-ray diffraction. This has corroborated the generic conclusions of earlier studies based on the use of calcia–silica sol-gel glasses whilst highlighting the important differences associated with glass composition; the results also reveal the more subtle effects on reaction rates of the choice of body fluid simulant. The results also indicate the presence of tricalcium phosphate crystallites deposited onto the surface of the glass as a precursor to the growth of hydroxyapatite, and indicates that there is some preferred orientation to their growth

    Anabranching and maximum flow efficiency in Magela Creek, northern Australia

    Get PDF
    Anabranching is the prevailing river pattern found along alluvial tracts of the world's largest rivers. Hydraulic geometry and bed material discharge are compared between single channel and anabranching reaches up to 4 times bank-full discharge in Magela Creek, northern Australia. The anabranching channels exhibit greater sediment transporting capacity per unit available stream power, i.e., maximum flow efficiency (MFE). Simple flume experiments corroborate our field results showing the flow efficiency gains associated with anabranching, and highlight the prospect of a dominant anabranch, which is found in many anabranching rivers. These results demonstrate that anabranching can constitute a stable river pattern in dynamic equilibrium under circumstances in which a continuous single channel would be unable to maintain sediment conveyance. We propose the existence of a flow efficiency continuum that embraces dynamic equilibrium and disequilibrium (vertically accreting) anabranching rivers

    Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses

    Get PDF
    Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 µg·mm–2·h–1) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer (20 µm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by 31P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections

    Span of control in supervision of rail track work

    Get PDF
    The supervision of engineering work on the railways has received relatively little examination despite being both safety-critical in its own right and having wider implications for the successful running of the railways. The present paper is concerned with understanding the factors that make different engineering works perceived as easier or harder to manage. We describe an approach building on notions of ‘span of control’, through which we developed the TOECAP inventory (Team, Organisation, Environment, Communication, Activity and Personal). This tool was validated through both interviews and questionnaires. As well as identifying the physical factors involved, the work also emphasised the importance of collaborative and attitudinal factors. We conclude by discussing limitations of the present work and future directions for development

    A 43-Nucleotide RNACis-Acting Element Governs the Site-Specific Formation of the 3′ End of a Poxvirus Late mRNA

    Get PDF
    AbstractThe 3′ ends of late mRNAs of theatigene, encoding the major component of the A-type inclusions, are generated by endoribonucleolytic cleavage at a specific site in the primary transcript [Antczaket al.,(1992),Proc. Natl. Acad. Sci. USA89, 12033–12037]. In this study, sequence analysis of cDNAs of the 3′ ends ofatimRNAs showed these mRNAs are 3′ polyadenylated at the RNA cleavage site. This suggests thatatimRNA 3′ end formation involves cleavage of a late transcript, with subsequent 3′ polyadenylation of the 5′ cleavage product. The RNAcis-acting element, the AX element, directing orientation-dependent formation of these mRNA 3′ ends, was mapped to a 345-bpAluI–XbaI fragment. Deletion analyses of this fragment showed that the boundaries of the AX element are within −5 and +38 of the RNA cleavage site. Scanning mutagenesis showed that the AX element contains at least two subelements: subelement I, 5′-UUUAU↓CCGAUAAUUC-3′, containing the cleavage site (↓), separated from the downstream subelement II, 5′-AAUUUCGGAUUUGAAUGC-3′, by a 10-nucleotide region, whose composition may be altered without effect on RNA 3′ end formation. These features, which differ from those of other elements controlling RNA processing, suggest that the AX element is a component of a novel mechanism of RNA 3′ end formation
    corecore