2,301 research outputs found
The tractability frontier of well-designed SPARQL queries
We study the complexity of query evaluation of SPARQL queries. We focus on
the fundamental fragment of well-designed SPARQL restricted to the AND,
OPTIONAL and UNION operators. Our main result is a structural characterisation
of the classes of well-designed queries that can be evaluated in polynomial
time. In particular, we introduce a new notion of width called domination
width, which relies on the well-known notion of treewidth. We show that, under
some complexity theoretic assumptions, the classes of well-designed queries
that can be evaluated in polynomial time are precisely those of bounded
domination width
Tight--binding description of the quasiparticle dispersion of graphite and few--layer graphene
A universal set of third--nearest neighbour tight--binding (TB) parameters is
presented for calculation of the quasiparticle (QP) dispersion of stacked
graphene layers () with stacking sequence. The QP
bands are strongly renormalized by electron--electron interactions which
results in a 20% increase of the nearest neighbour in--plane and out--of--plane
TB parameters when compared to band structure from density functional theory.
With the new set of TB parameters we determine the Fermi surface and evaluate
exciton energies, charge carrier plasmon frequencies and the conductivities
which are relevant for recent angle--resolved photoemission, optical, electron
energy loss and transport measurements. A comparision of these quantitities to
experiments yields an excellent agreement. Furthermore we discuss the
transition from few layer graphene to graphite and a semimetal to metal
transition in a TB framework.Comment: Corresponding author: A. Gr\"uneis Tel.: +49 351 4659 519 e--mail:
[email protected]
Simultaneous in vivo positron emission tomography and magnetic resonance imaging
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner
A Supercooled Spin Liquid State in the Frustrated Pyrochlore Dy2Ti2O7
A "supercooled" liquid develops when a fluid does not crystallize upon
cooling below its ordering temperature. Instead, the microscopic relaxation
times diverge so rapidly that, upon further cooling, equilibration eventually
becomes impossible and glass formation occurs. Classic supercooled liquids
exhibit specific identifiers including microscopic relaxation times diverging
on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for
the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for
time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of
interest because its frustrated magnetic interactions may, in theory, lead to
highly exotic magnetic fluids. However, its true magnetic state at low
temperatures has proven very difficult to identify unambiguously. Here we
introduce high-precision, boundary-free magnetization transport techniques
based upon toroidal geometries and gain a fundamentally new understanding of
the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We
demonstrate a virtually universal HN form for the magnetic susceptibility, a
general KWW form for the real-time magnetic relaxation, and a divergence of the
microscopic magnetic relaxation rates with precisely the VTF trajectory. Low
temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled
magnetic liquid; the consequent implication is that this translationally
invariant lattice of strongly correlated spins is evolving towards an
unprecedented magnetic glass state, perhaps due to many-body localization of
spin.Comment: Version 2 updates: added legend for data in Figures 4A and 4B;
corrected equation reference in caption for Figure 4
High-Fidelity Control, Detection, and Entanglement of Alkaline-Earth Rydberg Atoms
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures
Fixed-parameter tractability of multicut parameterized by the size of the cutset
Given an undirected graph , a collection of
pairs of vertices, and an integer , the Edge Multicut problem ask if there
is a set of at most edges such that the removal of disconnects
every from the corresponding . Vertex Multicut is the analogous
problem where is a set of at most vertices. Our main result is that
both problems can be solved in time , i.e.,
fixed-parameter tractable parameterized by the size of the cutset in the
solution. By contrast, it is unlikely that an algorithm with running time of
the form exists for the directed version of the problem, as
we show it to be W[1]-hard parameterized by the size of the cutset
Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis
© 2015 by the authors; licensee MDPI, Basel, Switzerland. Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA
Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs)
Fibroblasts can be directly reprogrammed to induced renal tubular epithelial cells (iRECs) using four transcription factors. These engineered cells may be used for disease modeling, cell replacement therapy or drug and toxicity testing. Direct reprogramming induces drastic changes in the transcriptional landscape, protein expression, morphological and functional properties of cells. However, how the metabolome is changed by reprogramming and to what degree it resembles the target cell type remains unknown. Using untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-MS, we characterized the metabolome of mouse embryonic fibroblasts (MEFs), iRECs, mIMCD-3 cells, and whole kidneys. Metabolic fingerprinting can distinguish each cell type reliably, revealing iRECs are most similar to mIMCD-3 cells and clearly separate from MEFs used for reprogramming. Treatment with the cytotoxic drug cisplatin induced typical changes in the metabolic profile of iRECs commonly occurring in acute renal injury. Interestingly, metabolites in the medium of iRECs, but not of mIMCD-3 cells or fibroblast could distinguish treated and non-treated cells by cluster analysis. In conclusion, direct reprogramming of fibroblasts into renal tubular epithelial cells strongly influences the metabolome of engineered cells, suggesting that metabolic profiling may aid in establishing iRECs as in vitro models for nephrotoxicity testing in the future
Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000RAD and 15000RAD
The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RAD and 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RAD panel is an important high-resolution complement to the main 5000RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools
- …