4 research outputs found

    Combining Immunoassays to Identify Zika Virus Infection in Dengue-Endemic Areas

    No full text
    Zika virus (ZIKV) is a mosquito-borne flavivirus that has recently emerged as a global health threat. The rise in ZIKV infections has driven an increased incidence of neonates born with microcephaly or other neurological malformations. Therefore, screening for ZIKV infection can considerably impact pregnant women, especially during the first trimester. The majority of ZIKV infections are mild or asymptomatic, and clinical diagnosis is inaccurate. Moreover, given the high level of cross-reactivity among flaviviruses, serological approaches to distinguish ZIKV from dengue virus (DENV) infections are complicated. We used the combination of DENV and ZIKV nonstructural protein 1 (NS1) IgG enzyme-linked immunosorbent assay (ELISA) and ZIKV NS1 blockade-of-binding (BOB) ELISA to test the convalescent sera of non-flavivirus, primary DENV, secondary DENV, and ZIKV infections. Our findings indicate that primary testing using a ZIKV NS1 IgG ELISA, the test of choice for large-scale ZIKV serosurvey studies, provided relatively high sensitivity. Moreover, the confirmation of positive ELISA results using the ZIKV NS1 BOB ELISA increased average specificity to 94.59% across serum samples. The combined use of two simple ELISAs for ZIKV serosurveys and the monitoring of ZIKV infection during pregnancy can elucidate the epidemiology, pathogenesis, and complications of ZIKV in DENV-endemic areas

    Association between nutritional status and dengue severity in Thai children and adolescents.

    No full text
    Most cases of dengue virus infection are mild, but severe cases can be fatal. Therefore, identification of factors associated with dengue severity is essential to improve patient outcomes and reduce mortality. The objective of this study was to assess associations between nutritional status and dengue severity among Thai children and adolescents. This retrospective cross-sectional study was based on the medical records of 355 patients with dengue treated at the Hospital for Tropical Disease (Bangkok, Thailand) from 2017 to 2019. Subjects were Thai children aged less than 18 years with dengue virus infection confirmed by positive NS1 antigen or IgM. The 1997 and 2009 World Health Organization (WHO) dengue classifications were used to define disease severity and body mass index for age while the WHO growth chart was used to classify nutritional status. The proportions of patients with dengue fever who were underweight, normal weight, and overweight were 8.8%, 61.5%, and 29.7%, respectively. The proportions of patients with dengue haemorrhagic fever (DHF) who were underweight, normal weight, and overweight were 10.2%, 66.1%, and 23.7%, respectively. The proportions of patients with non-severe dengue who were underweight, normal weight, and overweight were 8.6%, 60.9%, and 30.5%, respectively; the same proportions of patients with severe dengue were 10.5%, 67.1%, and 22.4%, respectively. Higher proportions of patients with severe plasma leakage (DHF grade III and IV) were overweight compared with those with mild plasma leakage (DHF grade I and II) (45.5% vs. 18.8%). No difference in nutritional status was observed in patients with different dengue severity

    Diversity of Human Enterovirus Co-Circulations in Five Kindergartens in Bangkok between July 2019 and January 2020

    No full text
    Human enterovirus causes various clinical manifestations in the form of rashes, febrile illness, flu-like illness, uveitis, hand–foot–mouth disease (HFMD), herpangina, meningitis, and encephalitis. Enterovirus A71 and coxsackievirus are significant causes of epidemic HFMD worldwide, especially in children aged from birth to five years old. The enterovirus genotype variants causing HFMD epidemics have been reported increasingly worldwide in the last decade. We aim to use simple and robust molecular tools to investigate human enteroviruses circulating among kindergarten students at genotype and subgenotype levels. With the partial 5′-UTR sequencing analysis as a low-resolution preliminary grouping tool, ten enterovirus A71 (EV-A71) and coxsackievirus clusters were identified among 18 symptomatic cases and 14 asymptomatic cases in five kindergartens in Bangkok, Thailand, between July 2019 and January 2020. Two occurrences of a single clone causing an infection cluster were identified (EV-A71 C1-like subgenotype and coxsackievirus A6). Random amplification-based sequencing using MinION (Oxford Nanopore Technology) helped identify viral transmission between two closely related clones. Diverse genotypes co-circulating among children in kindergartens are reservoirs for new genotype variants emerging, which might be more virulent or better at immune escape. Surveillance of highly contagious enterovirus in communities is essential for disease notifications and controls
    corecore